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SEQUENTIAL NAIVE VERSION 
Why always Matrix Multiply? 

Often used 

Heavily optimized 

Interesting access patterns 

Good mixture of sufficient complexity but still simple 
enough for a comprehensive understanding 

Finally, it’s an important operation! 

Used in many applications as computational kernel 
In particular for sparse matrix operations 

Here: for dense matrices 
Experiments and learning 

High sustained/peak ratio 

Test system/compiler/OS 

Note on notation 
M[row,column] = M[row][column] 

Analogous to C
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ANALYSIS
Assumptions 

Assume square matrices 

Assume perfect write-through cache (no issues with 
conflict or capacity) 

Number of flops: f = 2*N3 
N² elements in C, each N steps, each step: multiply & 
add 

Number of unique memory accesses: munique = 3*N2 
Assuming perfect caching 

Load from A,B,C, store to C 

Counting all accesses (RW): mall = 4*N3 

Computational intensity 
r = f/m = f/munique = 2N3/3N2= O(N) 

Computationally intensive (if perfect caching) 

Peak performance expected for cache-based processor
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OPTIMIZING MATRIX MULTIPLY FOR A CPU 

Or: how to program a cache



MATRIX MULTIPLY – CPU NAIVE

CPU sequential version 

No big surprises 

Can be called directly
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void MatrixMulOnHost ( float* M, float* N,  
                       float* P, int Width ) 
{    
  for (int i = 0; i < Width; ++i)  
    { 
    for (int j = 0; j < Width; ++j)  
      { 
      float sum = 0; 
      for (int k = 0; k < Width; ++k)  
        { 
        float a = M[i * width + k]; 
        float b = N[k * width + j]; 
        sum += a * b; 
      } 
      P[i * Width + j] = sum; 
    } 
  } 
}



MATRIX MULTIPLY – CPU NAIVE
Performance for single-threaded CPU run 

Single precision (float, SP) 

Xeon E5 Sandy Bridge 

4 cores @ 2.4GHz (76.8 GFLOP/s peak) 

High performance until 1500x1500 
elements? 

Fits in cache (10MB) – capacity! 

(1.5k elements)2 x 4B (float) = 9MB/matrix 

(2k elements)2 x 4B (float) = 16MB/matrix 

Reason for drops @ 512 and 1024 though? 
Evictions due to conflicts
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MATRIX MULTIPLY – CPU TILED/BLOCKED 

Addition is associative  
a + (b + c) = (a + b) + c 

So feel free to reorder multiply 
operations 

Goal: increase cache hit rate 

Block size is architecture-
dependent parameter 

Cache size
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MATRIX MULTIPLY – CPU BLOCKED
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void MatrixMulOnHost ( float* M, float* N, float* P, long Width, long blockSize ) 
{    
  for ( long ii = 0; ii < matWidth; ii += blockSize ) { 
    for ( long jj = 0; jj < matWidth; jj += blockSize ) { 
      for ( long kk = 0; kk < matWidth; kk += blockSize ) { 
        for (int i = ii; i < min(ii+blockSize, matWidth); ++i) { 
          for (int j = jj; j < min(jj+blockSize, matWidth); ++j) { 
            float sum = 0; 
            for (int k = kk; k < Width; ++k) { 
              float a = M[i * width + k]; 
              float b = N[k * width + j]; 
              sum += a * b; 
            } 
            P[i * Width + j] += sum; 
          } 
        } 
      } 
    } 
  } 
}

min only relevant if matWidth is 
not a full multiple of blockSize



MEMORY ACCESS PATTERN
Trace for naive implementation Trace for blocks of two-by-two
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.. 
<snip> 
.. 
P[3][2] += M[3][0] * N[0][2] 
P[3][2] += M[3][1] * N[1][2] 
P[3][2] += M[3][2] * N[2][2] 
P[3][2] += M[3][3] * N[3][2] 
.. 
P[3][3] += M[3][0] * N[0][3] 
P[3][3] += M[3][1] * N[1][3] 
P[3][3] += M[3][2] * N[2][3] 
P[3][3] += M[3][3] * N[3][3] 
.. 
<snip> 
..

.. 
<snip> 
.. 
P[3][2] += M[3][0] * N[0][2] 
P[3][2] += M[3][1] * N[1][2] 
P[3][3] += M[3][0] * N[0][3] 
P[3][3] += M[3][1] * N[1][3] 
.. 
P[3][2] += M[3][2] * N[2][2] 
P[3][2] += M[3][3] * N[3][2] 
P[3][3] += M[3][2] * N[2][3] 
P[3][3] += M[3][3] * N[3][3] 
.. 
<snip> 
..

No locality - RED Spatial locality - RED Temporal locality - RED



PERFORMANCE ANALYSIS
Performance for single-threaded CPU run 

Xeon E5 Sandy Bridge 

4 cores @ 2.4GHz 

Single precision 

Varying matrix sizes [elements per dimension] 

Block size 0 = non-blocked (reference) 

Huge drop for block size of 1? 
Control flow overhead 

Non-blocked better than blocked? 
Cache size! 

Factor of 5-10x for blocked vs. non-blocked 
typical
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MATRIX MULTIPLY FOR A GPU 



INITIAL GPU VERSION 

GPU version 
Kernel only, data movement 
& control is missing 

Notice the “d”-suffix! 

Two outer loops are missing  
Handled instead by a 2D 
thread array 

Per loop 
2 FLOPS 

4 memory accesses
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// Matrix multiplication kernel – thread code 
__global__ void MatrixMulKernel ( float* Md, 
                                  float* Nd, 
                                  float* Pd,  
                                  int Width ) 
{ 
  float Pvalue = 0; // intermediate result 
  float Melement, Nelement; 

  for ( int k = 0; k < Width; ++k ) { 
    Melement = Md[threadIdx.y * Width + k]; 
    Nelement = Nd[k * Width + threadIdx.x]; 
    Pvalue += Melement * Nelement; 
  } 
  Pd[threadIdx.y * Width + threadIdx.x] = Pvalue; 
}



INITIAL GPU VERSION 
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void MatrixMulOnDevice ( float* M, float* N, float* P, int Width ) 
{ 
  int size = Width * Width * sizeof(float);  
  float* Md, Nd, Pd; 
  ... 
  // Allocate and Load M, N to device memory  
  cudaMalloc ( &Md, size ); 
  cudaMemcpy ( Md, M, size, cudaMemcpyHostToDevice ); 
  cudaMalloc ( &Nd, size ); 
  cudaMemcpy ( Nd, N, size, cudaMemcpyHostToDevice ); 
  // Allocate P on the device 
  cudaMalloc ( &Pd, size ); 
   
  // Setup the execution configuration 
  dim3 dimGrid ( 1, 1 ); 
  dim3 dimBlock ( Width, Width ); 
  MatrixMulKernel <<< dimGrid, dimBlock >>> ( Md, Nd, Pd, Width ); 

  // Read P from the device 
  cudaMemcpy ( P, Pd, size, cudaMemcpyDeviceToHost ); 
  // Free device matrices 
  cudaFree ( Md ); cudaFree ( Nd ); cudaFree ( Pd ); 
}



MATRIX MULTIPLY – QUICK ANALYSIS
A single thread block computes Pd 

Each thread computes a  
single element of Pd 

Load a row of Md 

Load a column of Nd 

Per element: one multiplication, one add 

Write Pd 

Issue 1: Matrix size limited by threads/block 

Issue 2: Compute/Memory ratio 
(= Computational intensity) 

No cache => m = mall = 4N3 

r = f/m = 2N3/4N3 = 1/2 (very low) 

In FLOPS/Byte even worse: 2 FLOPS vs 16 Bytes = 
1/8 (horrible)
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MULTIPLE THREAD BLOCKS 

Multiple thread blocks, 
organized in a 2D array 

Each block: 
Consists of (TILE_WIDTH)2 threads 

Computes (TILE_WIDTH)2 sub-matrix 

Resulting grid 
(WIDTH/TILE_WIDTH)2 blocks 

Limited by max grid size
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MULTIPLE THREAD BLOCKS 
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// Matrix multiplication kernel – thread code 
__global__ void MatrixMulKernel ( float* Md, 
                                  float* Nd, 
                                  float* Pd,  
                                  int Width ) 
{ 
  float Pvalue = 0; // intermediate result 
  float Melement, Nelement; 
  // Calculate the row index of the Pd element 
  int row = blockIdx.y * blockDim.y + threadIdx.y; 
  // Calculate the column index of the Pd element 
  int col = blockIdx.x * blockDim.x + threadIdx.x; 

  for ( int k = 0; k < Width; ++k ) { 
    Melement = Md[row * Width + k]; 
    Nelement = Nd[k * Width + col]; 
    Pvalue += Melement * Nelement; 
  } 
  Pd[row * Width + col] = Pvalue; 
}



ANALYSIS
RTX 2080 GPU, Turing-class 

Scheduling: varying the number of 
threads per block 

1k x 1k matrix size 

Match block count 

In general: “more threads are better”, 
but not always like this -> e.g. register 
pressure 

Calculating FLOP/s 
N2 elements, each 2N FLOPS, 2N3 FLOPs 
total  

Here: 2.14 GFLOPS total 

Without data movement
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ANALYSIS - UPPER BOUND?
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Model
CC

Revi-
sion

Total 
global 

memory 
[bytes]

Multi-
proces

sors
Cores

Total 
constant 
memory 
[bytes]

Shared 
memory 

per 
block 

[bytes]

Regis-
ters
per 

block

Warp 
size

Threads
per 

block

Max 
dimen-
sion of 
a block

Max. 
dimen-
sion of 
a grid

Max. 
memory 

pitch 
[bytes]

Clock 
rate

[GHz]

Concurrent 
copy and 
execution

GeForce 
GTX 480 2,0 1.5G 15 480 64k 48k 32k 32 1k 1k x 1k 

x 64

65535 
x 

65535 
x 

65535

2G 1,4 Y 
1

Tesla 
K20c 3,5 5G 13 2496 64k 48k 64k 32 1k 1k x 1k 

x 64

2G x 
65535 

x 
65535

2G 0,7 Y 
2

RTX 
2080Ti 7,5 11G 68 4352 64k 48k 64k 32 1k 1k x 1k 

x 64

2G x 
65535 

x 
65535

2G 1,54 Y 
3

For single precision: 4352 * 1.54 * 2 = 13,404.16 GFLOP/s (clock boost)



ANALYSIS - UPPER BOUND?

Each thread works on global memory 
2 32bit accesses per SP Multiply-Add 

4B per FLOP 

=> 13 TFLOPs require 52 TB/s memory bandwidth 
RTX 2080Ti: 352bit * 1750MHz (14 Gbps effective) (GDDR6) = 616 GB/s 

Memory bandwidth limits performance to ~150 GFLOP/s 
GPU caches? 

-> Increase flop/memory ratio! 

-> Similar to blocking, but this time we have to define reuse manually
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SHARED MEMORY OPTIMIZATIONS



SHARED MEMORY 
On-chip memory 

Lifetime: thread lifetime 

Access costs in the best case 
equal register access 

Organized in n banks 
Typ. 16-32 banks with 32bit 
width 

Low-order interleaving 

Parallel access if no conflict 

Conflicts result in access 
serialization
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SHARED MEMORY BANK CONFLICTS
Shared memory bank 

access without blocking 
Shared memory bank 
access with blocking 

Multi- and broadcast 
meantime supported
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TILING/BLOCKING
Associativity of C = A * B 

Resorting the summation of the pair-
wise products 

Increase locality by reordering 
memory accesses 

=> Tiling or blocking 

Each TxT tile uses each element T times 

Calculate only parts of the elements 
of C, so that access pattern has high 
locality 

Beneficial for both sequential and 
parallel algorithms
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MATRIX MULTIPLY - SHARED MEMORY
Old: each input element is being 
read by TILE_WIDTH threads 

New: is read by one thread, but 
used by multiple threads 

Size of a sub-set should match a tile 
size 

Separate kernel execution into 
phases 

1. Fill shared memory 

2. Execute 

3. Repeat
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SHARED MEMORY - PHASES FOR 2X2 TILE
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T0,0 T1,0 T0,1 T1,1

Md0,0 —> Mds0,0 Md1,0 —> Mds1,0 Md0,1 —> Mds0,1 Md1,1 —> Mds1,1

Nd0,0 —> Nds0,0 Nd1,0 —> Nds1,0 Nd0,1 —> Nds0,1 Nd1,1 —> Nds1,1

PdValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

PdValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

Md2,0 —> Mds0,0 Md3,0 —> Mds1,0 Md2,1 —> Mds0,1 Md3,1 —> Mds1,1

Nd0,2 —> Nds0,0 Nd1,2 —> Nds1,0 Nd0,3 —> Nds0,1 Nd1,3 —> Nds1,1

PdValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

PdValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

… … … …
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NEW FLOP/MEMORY RATIO
Assuming a TILE_WIDTH of 16 and 
a 1k x 1k matrix 

256 threads per block 

1k/16 => 64 x 64 blocks 

Each block 
2 loads per thread = 512 loads 

16 MADDs per thread = 8k flops 

New flop/memory ratio 
8k:512 = 16:1 

16 FLOPS : 4 Bytes = 4 (good!) 

Plus improved coalescing
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SHARED MEMORY IMPLEMENTATION
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__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width ) 
{ 
  __shared__ float Mds [TILEWIDTH] [TILEWIDTH]; 
  __shared__ float Nds [TILEWIDTH] [TILEWIDTH]; 
  int bx = blockIdx.x;  int by = blockIdx.y; 
  int tx = threadIdx.x; int ty = threadIdx.y; 
  int row = by * TILEWIDTH + ty; 
  int col = bx * TILEWIDTH + tx; 
  float Pvalue = 0; 

  if !(Row > Width || Col > Width) { 
    for ( int m = 0; m < Width / TILEWIDTH; ++m ) { // loop over tiles 
      // Collaborative loading of Md and Nd tiles into shared memory 
      Mds [ty] [tx] = Md [ row * Width + ( m * TILEWIDTH + tx ) ]; 
      Nds [ty] [tx] = Nd [ col + ( m * TILEWIDTH + ty ) * Width ]; 
      __syncthreads(); 

      for ( int k = 0; k < TILEWIDTH; ++k ) 
        Pvalue += Mds[ty][k] * Nds[k][tx]; 
      __syncthreads (); 
    } 
    Pd[row * Width + col] = Pvalue; 
  } 
}

Something is 
missing here!



SHARED MEMORY IMPLEMENTATION
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__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width ) 
{ 
  __shared__ float Mds [TILEWIDTH] [TILEWIDTH]; 
  __shared__ float Nds [TILEWIDTH] [TILEWIDTH]; 
  int bx = blockIdx.x;  int by = blockIdx.y; 
  int tx = threadIdx.x; int ty = threadIdx.y; 
  int row = by * TILEWIDTH + ty; 
  int col = bx * TILEWIDTH + tx; 
  float Pvalue = 0; 

  if !(Row > Width || Col > Width) { 
    for ( int m = 0; m < Width / TILEWIDTH; ++m ) { // loop over tiles 
      // Collaborative loading of Md and Nd tiles into shared memory 
      Mds [ty] [tx] = Md [ row * Width + ( m * TILEWIDTH + tx ) ]; 
      Nds [ty] [tx] = Nd [ col + ( m * TILEWIDTH + ty ) * Width ]; 
      __syncthreads(); 

      for ( int k = 0; k < TILEWIDTH; ++k ) 
        Pvalue += Mds[ty][k] * Nds[k][tx]; 
      __syncthreads (); 
    } 
    Pd[row * Width + col] = Pvalue; 
  } 
}

Dependencies resolved 
using synchronization



SHARED MEMORY RESULTS
Performance comparison for RTX 
2080 

Tiled only 

Use of shared memory 

Block size <= 1k 

Both code optimizations and kernel 
launch configuration matters! 

Still a gap of about 10x to peak 
performance 

Note: GPU’s L1 cache was turned 
off
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POSSIBLE FURTHER OPTIMIZATIONS
Multiple output values per thread 

Reduces the pressure on shared memory as tile data can be used in multiple calculations 

ILP optimization 

Bank conflicts in shared memory 
Use nvprof to find out about such conflicts 

Vectorize shared memory loads and stores by using compound data types  
float2/float4 

Effective shared memory bandwidth should increase 

Double buffering by overlapping shared memory load for first set while 
second set is computed 

Effective latency hiding 

Requirements on shared memory capacity double
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THREE TYPES OF DEPENDENCIES

RAW: true or data dependency 
True dependency, so only solvable using synchronization, see (1) 

WAR: anti dependency 
Is a name dependency, solvable using synchronization or renaming, see (2) 

WAW: output dependency 
Is a name dependency, solvable using synchronization or renaming, n.a. here

31

<snip> 
    for ( int m = 0; m < Width / TILEWIDTH; ++m ) { // loop over tiles 
      // Collaborative loading of Md and Nd tiles into shared memory 
      Mds [ty] [tx] = Md [ row * Width + ( m * TILEWIDTH + tx ) ]; 
      Nds [ty] [tx] = Nd [ col + ( m * TILEWIDTH + ty ) * Width ]; 
      __syncthreads(); 

      for ( int k = 0; k < TILEWIDTH; ++k ) 
        Pvalue += Mds[ty][k] * Nds[k][tx]; 
      __syncthreads (); 
    } 
<snip>

1

2



SHARED MEMORY ALLOCATIONS
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__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width ) 
{ 
  __shared__ float Mds [TILEWIDTH] [TILEWIDTH]; 
  __shared__ float Nds [TILEWIDTH] [TILEWIDTH]; 
  ... 
} 

__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width ) 
{ 
  extern __shared__ float mem_ds []; 
  float *Mds = & ( mem_ds [0] ); 
  float *Nds = & ( mem_ds [size_of_Mds] ); 
  ... 
}  

int main ()  
{ 
  ... 
  MM_SM <<< dimGrid, dimBlock, sharedSize >>> ( Md, Nd, Pd, matWidth ); 
  ...

Manual memory 
management

Declare total shared 
memory



WRAPPING UP



SUMMARY
Matrix multiply as a good example to leverage locality using the shared 
memory 

Mind the synchronization within the thread block 
Dependencies = race conditions 

Threads are scheduled in warps, threads per warp might not match the scratchpad use 
model 

Shared memory about 10x faster than global memory in terms of bandwidth 
Leverage that for data reuse! 

Collective memory access, so mind dependencies! 

Usually one thread will fetch data for other threads to maximize coalescing 

Further candidates for matrix multiply optimizations 
ILP, vectorized memory accesses, fix bank conflicts, double buffering
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