GPU COMPUTING LECTURE 04 - SHARED MEMORY OPTIMIZATIONS

Kazem Shekofteh Kazem.shekofteh@ziti.uni-heidelberg.de Institute of Computer Engineering Ruprecht-Karls University of Heidelberg Inspired from lectures by Holger Fröning

Why always Matrix Multiply?

Often used

Heavily optimized

Interesting access patterns

Good mixture of sufficient complexity but still simple enough for a comprehensive understanding

Finally, it's an important operation!

Used in many applications as computational kernel

In particular for sparse matrix operations

Here: for dense matrices

Experiments and learning

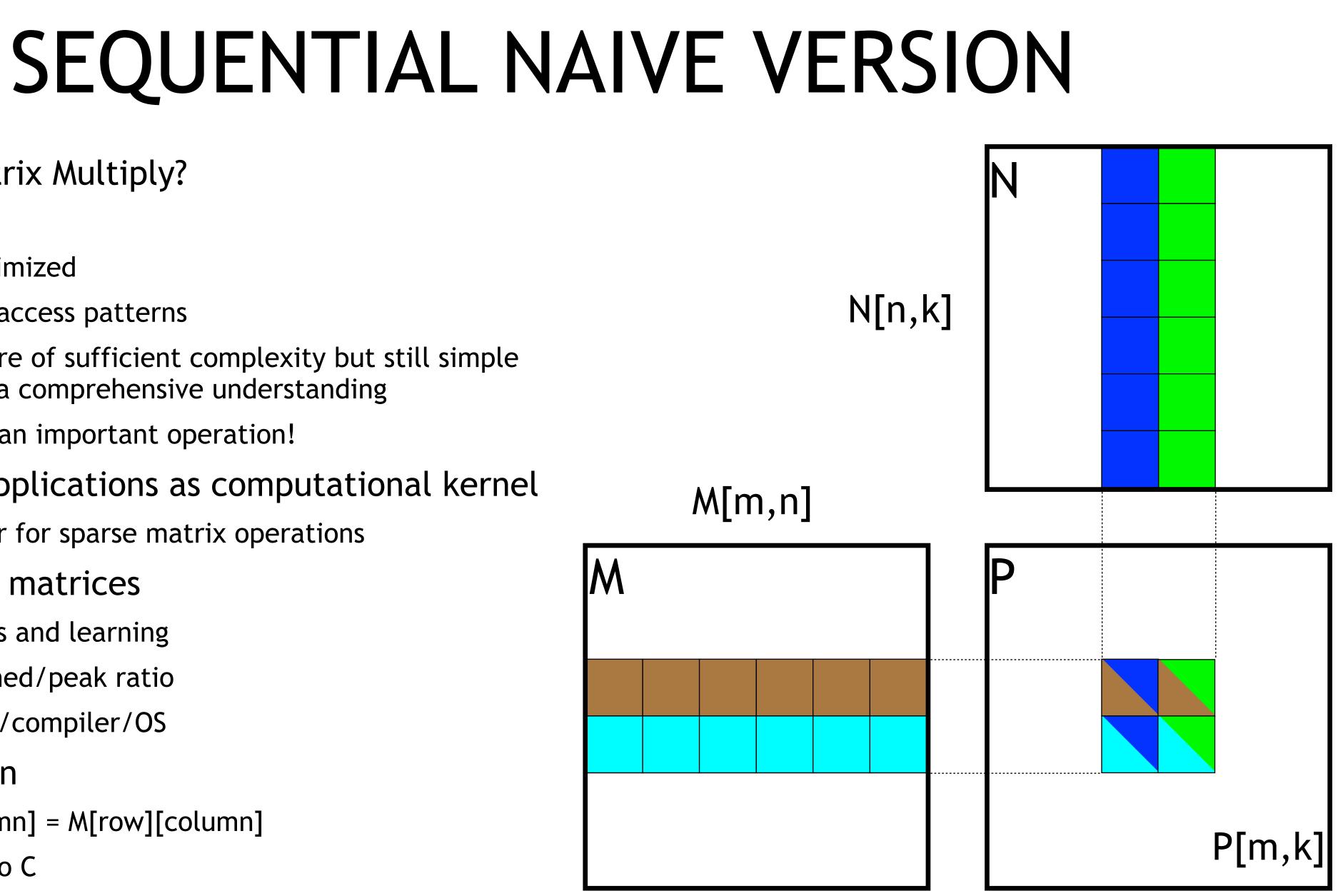
High sustained/peak ratio

Test system/compiler/OS

Note on notation

M[row,column] = M[row][column]

Analogous to C



ANALYSIS

Assumptions

Assume square matrices

Assume perfect write-through cache (no issues with conflict or capacity)

Number of flops: $f = 2*N^3$

N² elements in C, each N steps, each step: multiply & add

Number of unique memory accesses: m_{unique} = 3*N²

Assuming perfect caching

Load from A,B,C, store to C

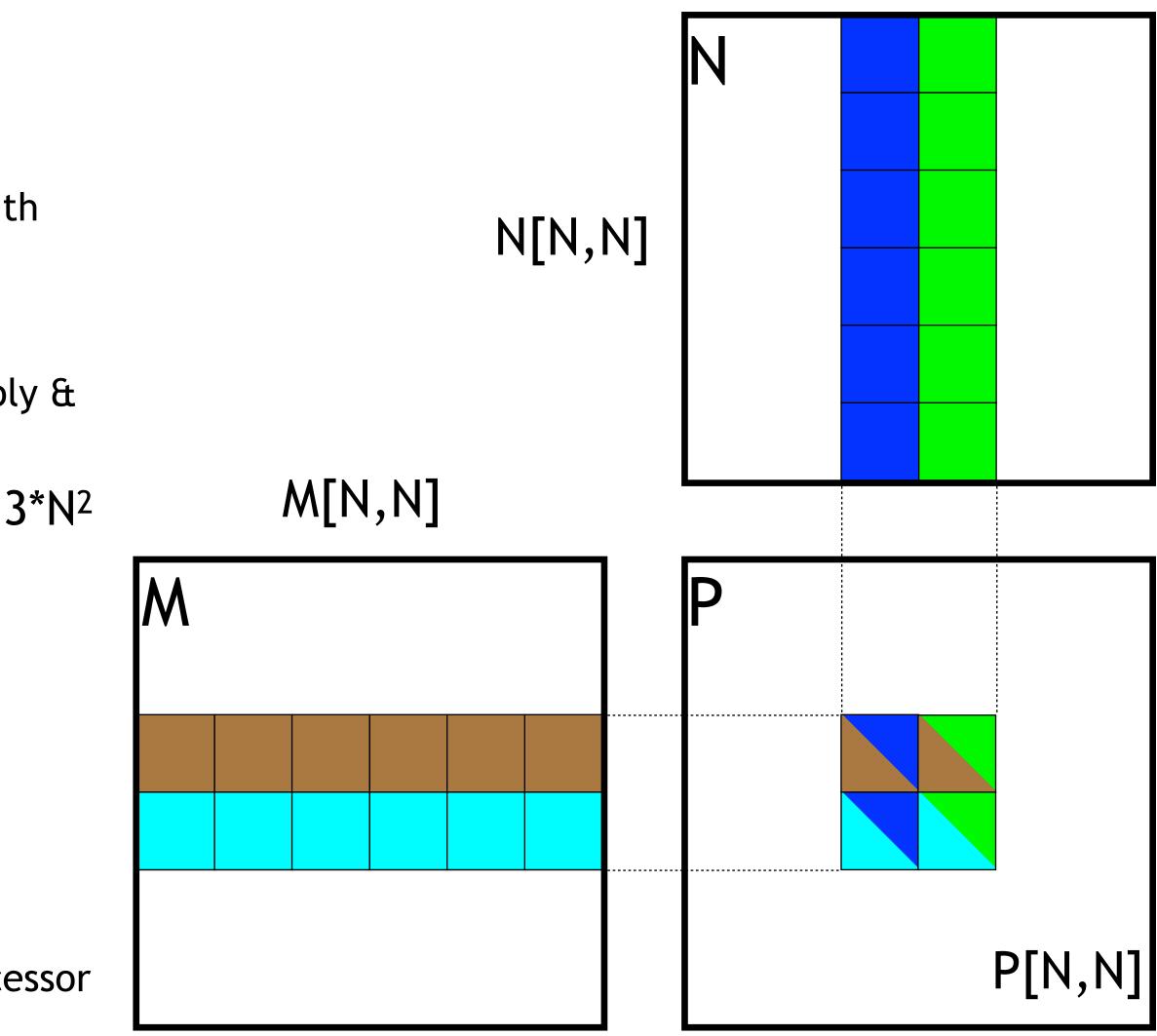
Counting all accesses (RW): m_{all} = 4*N³

Computational intensity

 $r = f/m = f/m_{unique} = 2N^3/3N^2 = O(N)$

Computationally intensive (if perfect caching)

Peak performance expected for cache-based processor



OPTIMIZING MATRIX MULTIPLY FOR A CPU

Or: how to program a cache

MATRIX MULTIPLY - CPU NAIVE

CPU sequential version No big surprises Can be called directly void MatrixMulOnHost (float* M, float* N,
 float* P, int Width)

```
for (int i = 0; i < Width; ++i)
{
  for (int j = 0; j < Width; ++j)
   {
    float sum = 0;
    for (int k = 0; k < Width; ++k)
        {
        float a = M[i * width + k];
        float b = N[k * width + j];
        sum += a * b;
    }
    P[i * Width + j] = sum;
}</pre>
```


MATRIX MULTIPLY - CPU NAIVE

Performance for single-threaded CPU run

Single precision (float, SP)

Xeon E5 Sandy Bridge

4 cores @ 2.4GHz (76.8 GFLOP/s peak)

High performance until 1500x1500 elements?

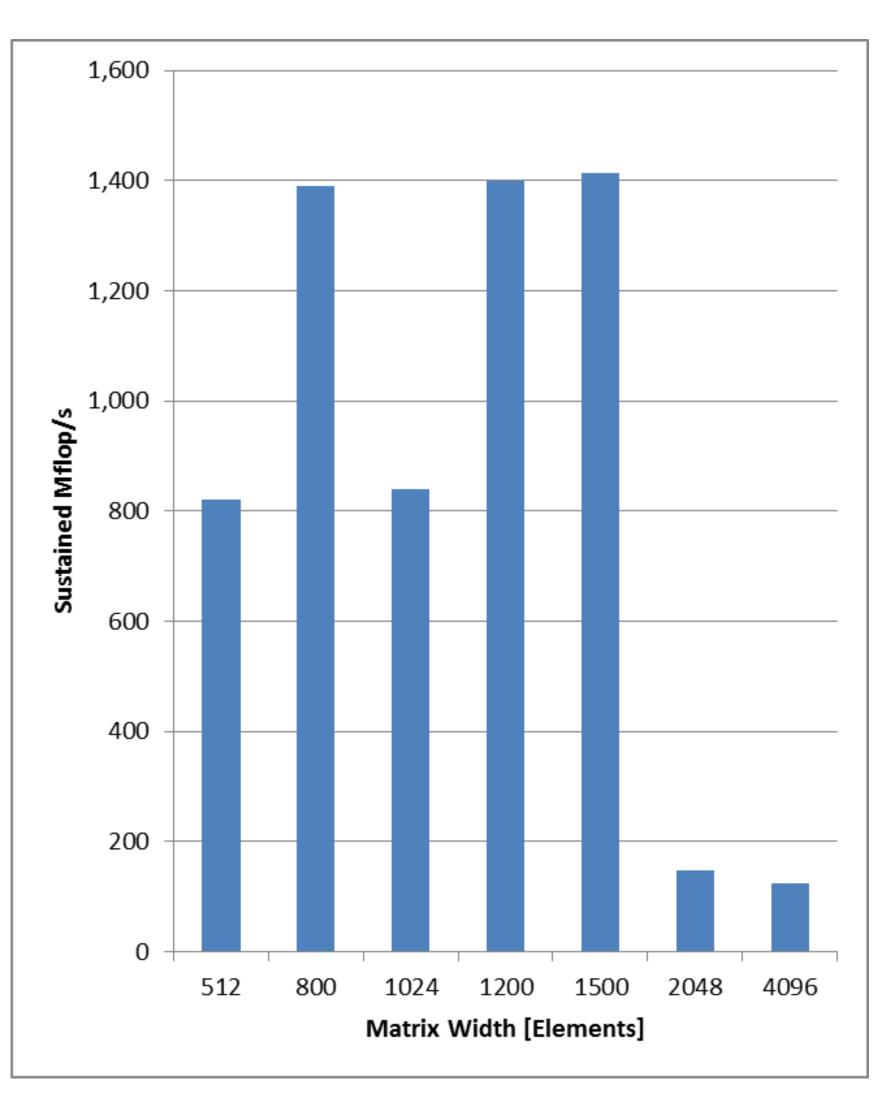
Fits in cache (10MB) - capacity!

 $(1.5k elements)^2 \times 4B$ (float) = 9MB/matrix

 $(2k elements)^2 \times 4B$ (float) = 16MB/matrix

Reason for drops @ 512 and 1024 though?

Evictions due to conflicts



Addition is associative

a + (b + c) = (a + b) + c

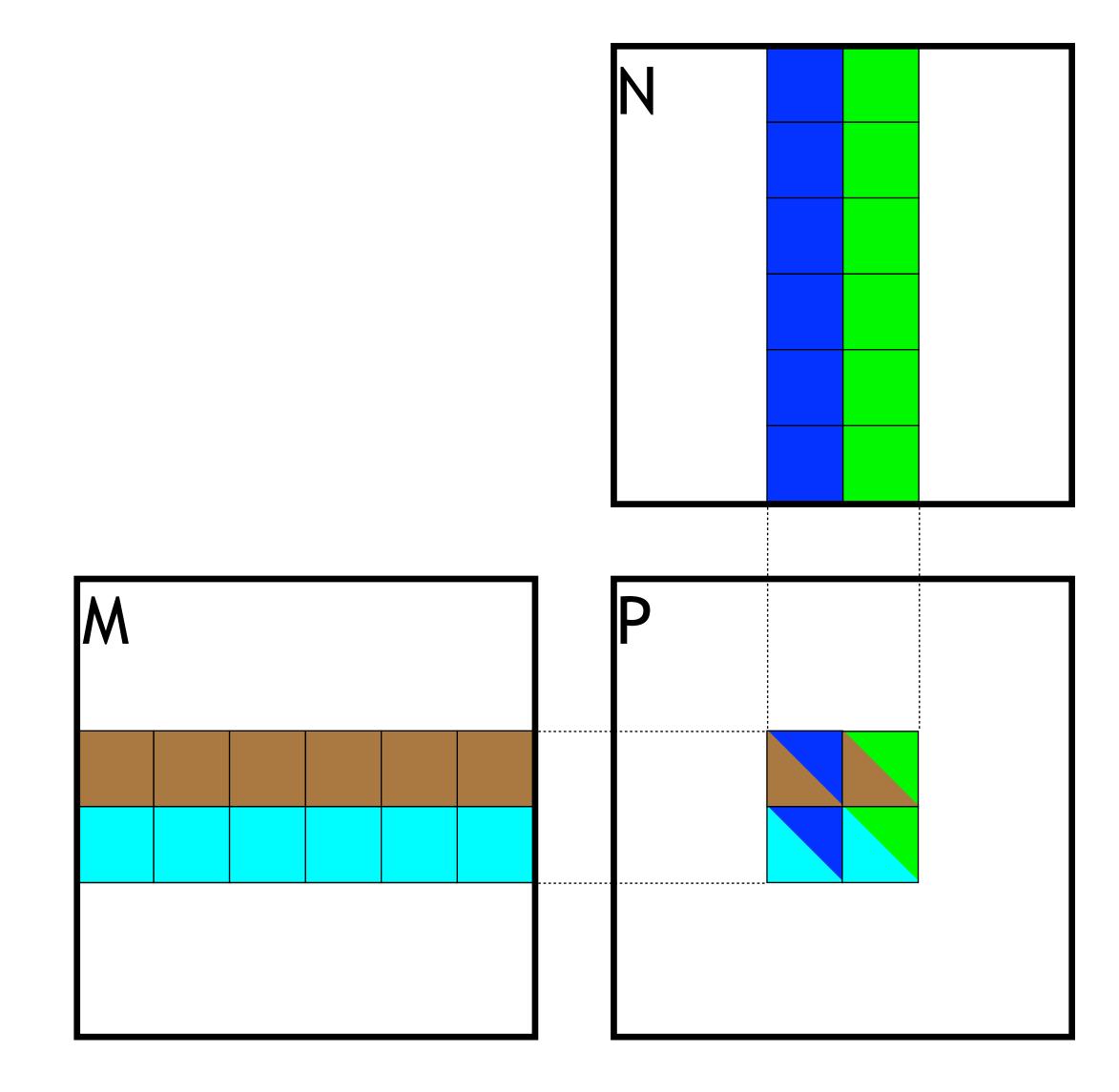
So feel free to reorder multiply operations

Goal: increase cache hit rate

Block size is architecturedependent parameter

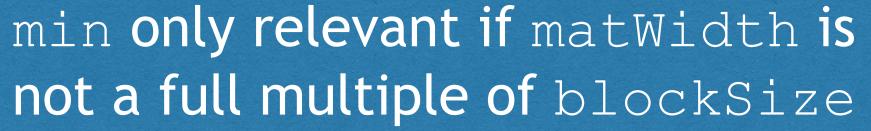
Cache size

MATRIX MULTIPLY - CPU TILED/BLOCKED



MATRIX MULTIPLY - CPU BLOCKED

```
void MatrixMulOnHost ( float* M, float* N, float* P, long Width, long blockSize )
  for ( long ii = 0; ii < matWidth; ii += blockSize ) {</pre>
    for ( long jj = 0; jj < matWidth; jj += blockSize ) {</pre>
      for ( long kk = 0; kk < matWidth; kk += blockSize ) {</pre>
        for (int i = ii; i < min(ii+blockSize, matWidth); ++i) {</pre>
          for (int j = jj; j < min(jj+blockSize, matWidth); ++j) {</pre>
            float sum = 0;
             for (int k = kk; k < Width; ++k) {
               float a = M[i * width + k];
               float b = N[k * width + j];
               sum += a * b;
             P[i * Width + j] += sum;
```



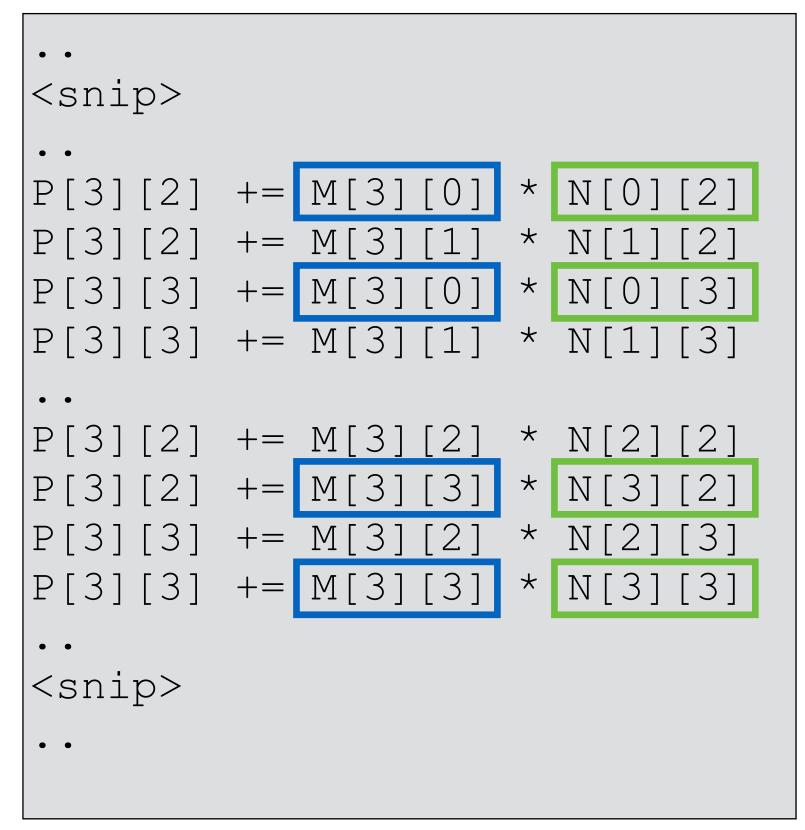
MEMORY ACCESS PATTERN

Trace for naive implementation

```
• •
<snip>
• •
P[3][2] += M[3][0] * N[0][2]
P[3][2] += M[3][1] * N[1][2]
P[3][2] += M[3][2] * N[2][2]
P[3][2] += M[3][3] * N[3][2]
• •
P[3]
    [3] += M[3][0]
                   * N[0][3]
P[3][3]
       += M[3][1]
                    * N[1][3]
                   * N[2][3]
P[3][3] += M[3][2]
P[3][3] += M[3][3] * N[3][3]
• •
<snip>
• •
```

No locality - RED

Trace for blocks of two-by-two

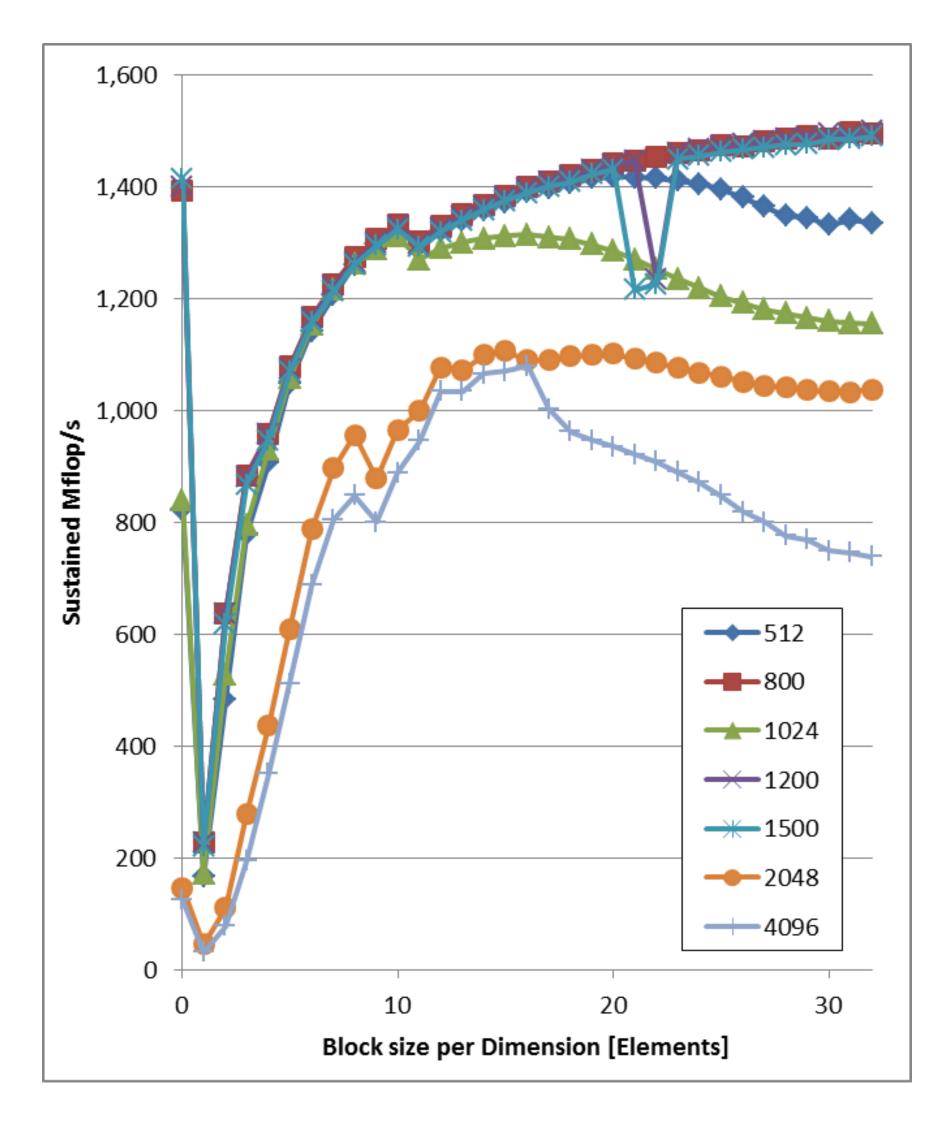


Temporal locality - RED

Spatial locality - RED

PERFORMANCE ANALYSIS

Performance for single-threaded CPU run Xeon E5 Sandy Bridge 4 cores @ 2.4GHz Single precision Varying matrix sizes [elements per dimension] Block size 0 = non-blocked (reference) Huge drop for block size of 1? Control flow overhead Non-blocked better than blocked? Cache size! Factor of 5-10x for blocked vs. non-blocked typical



10

MATRIX MULTIPLY FOR A GPU

INITIAL GPU VERSION

GPU version

Kernel only, data movement & control is missing

Notice the "d"-suffix!

Two outer loops are missing

Handled instead by a 2D thread array

Per loop

2 FLOPS

4 memory accesses

float Pvalue = 0; // intermediate result
float Melement, Nelement;

```
for ( int k = 0; k < Width; ++k ) {
  Melement = Md[threadIdx.y * Width + k];
  Nelement = Nd[k * Width + threadIdx.x];
  Pvalue += Melement * Nelement;</pre>
```

Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

INITIAL GPU VERSION

```
int size = Width * Width * sizeof(float);
float* Md, Nd, Pd;
• • •
// Allocate and Load M, N to device memory
cudaMalloc ( &Md, size );
cudaMemcpy ( Md, M, size, cudaMemcpyHostToDevice );
cudaMalloc ( &Nd, size );
cudaMemcpy ( Nd, N, size, cudaMemcpyHostToDevice );
// Allocate P on the device
cudaMalloc ( &Pd, size );
// Setup the execution configuration
dim3 dimGrid ( 1, 1 );
dim3 dimBlock ( Width, Width );
// Read P from the device
cudaMemcpy ( P, Pd, size, cudaMemcpyDeviceToHost );
// Free device matrices
cudaFree ( Md ); cudaFree ( Nd ); cudaFree ( Pd );
```

- void MatrixMulOnDevice (float* M, float* N, float* P, int Width)

- MatrixMulKernel <<< dimGrid, dimBlock >>> (Md, Nd, Pd, Width);

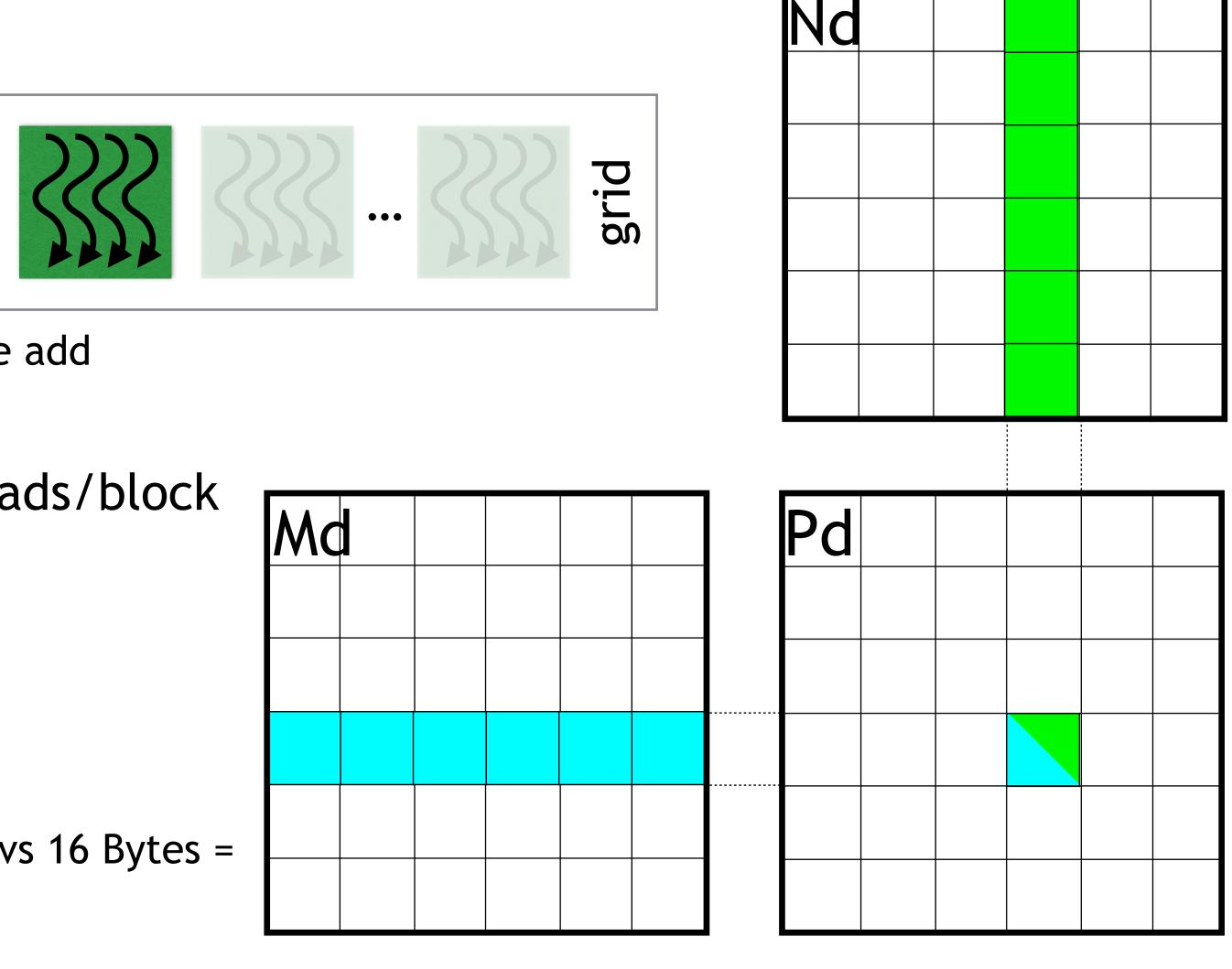
MATRIX MULTIPLY - QUICK ANALYSIS

A single thread block computes Pd

Each thread computes a single element of Pd

Load a row of Md

Load a column of Nd



Per element: one multiplication, one add Write Pd

Issue 1: Matrix size limited by threads/block

Issue 2: Compute/Memory ratio

(= Computational intensity)

No cache => m = m_{all} = $4N^3$

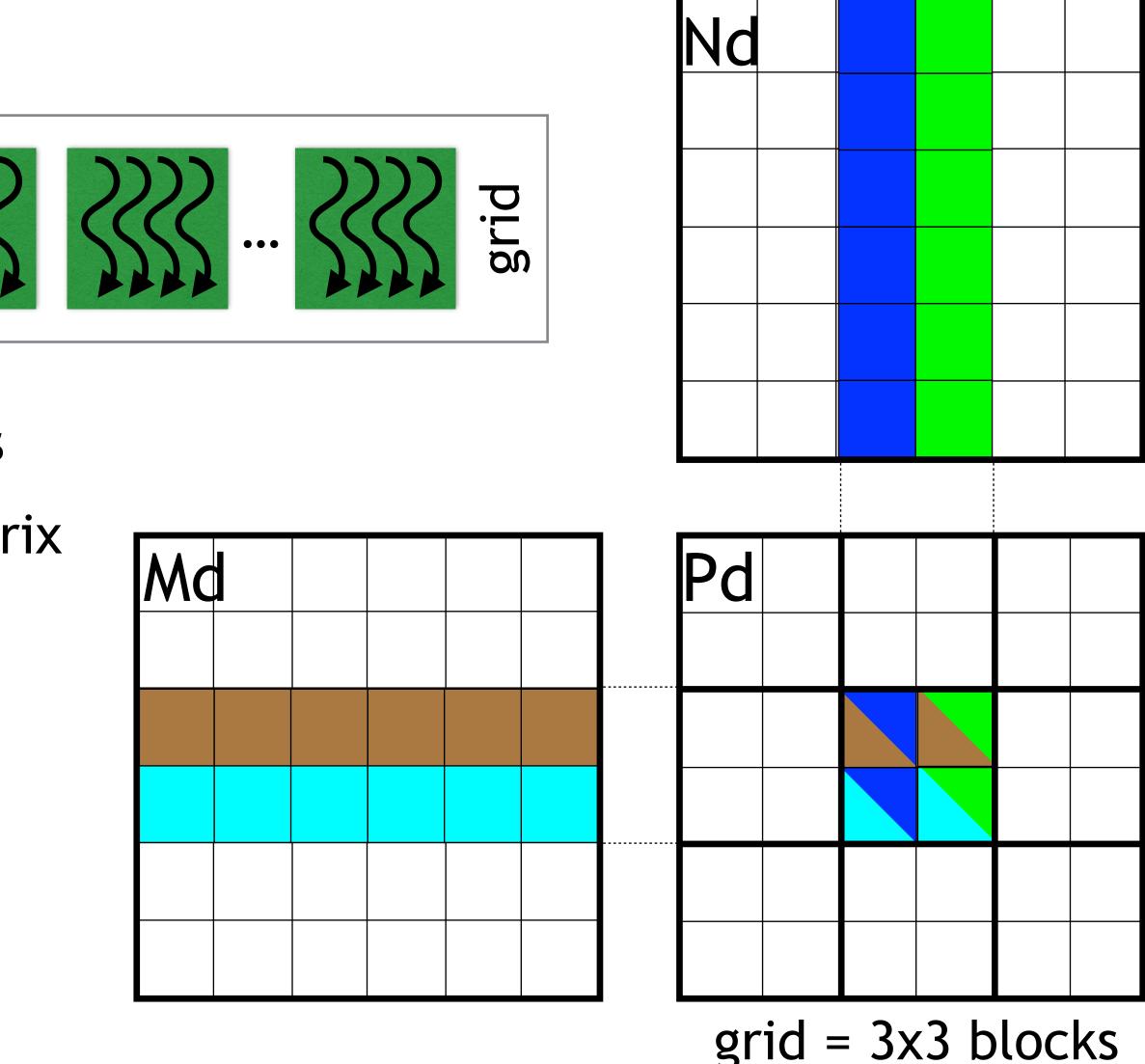
 $r = f/m = 2N^3/4N^3 = 1/2$ (very low)

In FLOPS/Byte even worse: 2 FLOPS vs 16 Bytes = 1/8 (horrible)

14

MULTIPLE THREAD BLOCKS

Multiple thread blocks, organized in a 2D array Each block: Consists of (TILE WIDTH)² threads **Computes (TILE WIDTH)² sub-matrix** Resulting grid (WIDTH/TILE WIDTH)² blocks Limited by max grid size



MULTIPLE THREAD BLOCKS

float Pvalue = 0; // intermediate result float Melement, Nelement;

for (int k = 0; k < Width; ++k) { Melement = Md[row * Width + k]; Nelement = Nd[k * Width + col]; Pvalue += Melement * Nelement; Pd[row * Width + col] = Pvalue;

```
// Matrix multiplication kernel - thread code
 global void MatrixMulKernel (float* Md,
                                  float* Nd,
                                  float* Pd,
                                  int Width )
```

// Calculate the row index of the Pd element int row = blockIdx.y * blockDim.y + threadIdx.y; // Calculate the column index of the Pd element int col = blockIdx.x * blockDim.x + threadIdx.x;

ANALYSIS

RTX 2080 GPU, Turing-class Scheduling: varying the number of threads per block

1k x 1k matrix size

Match block count

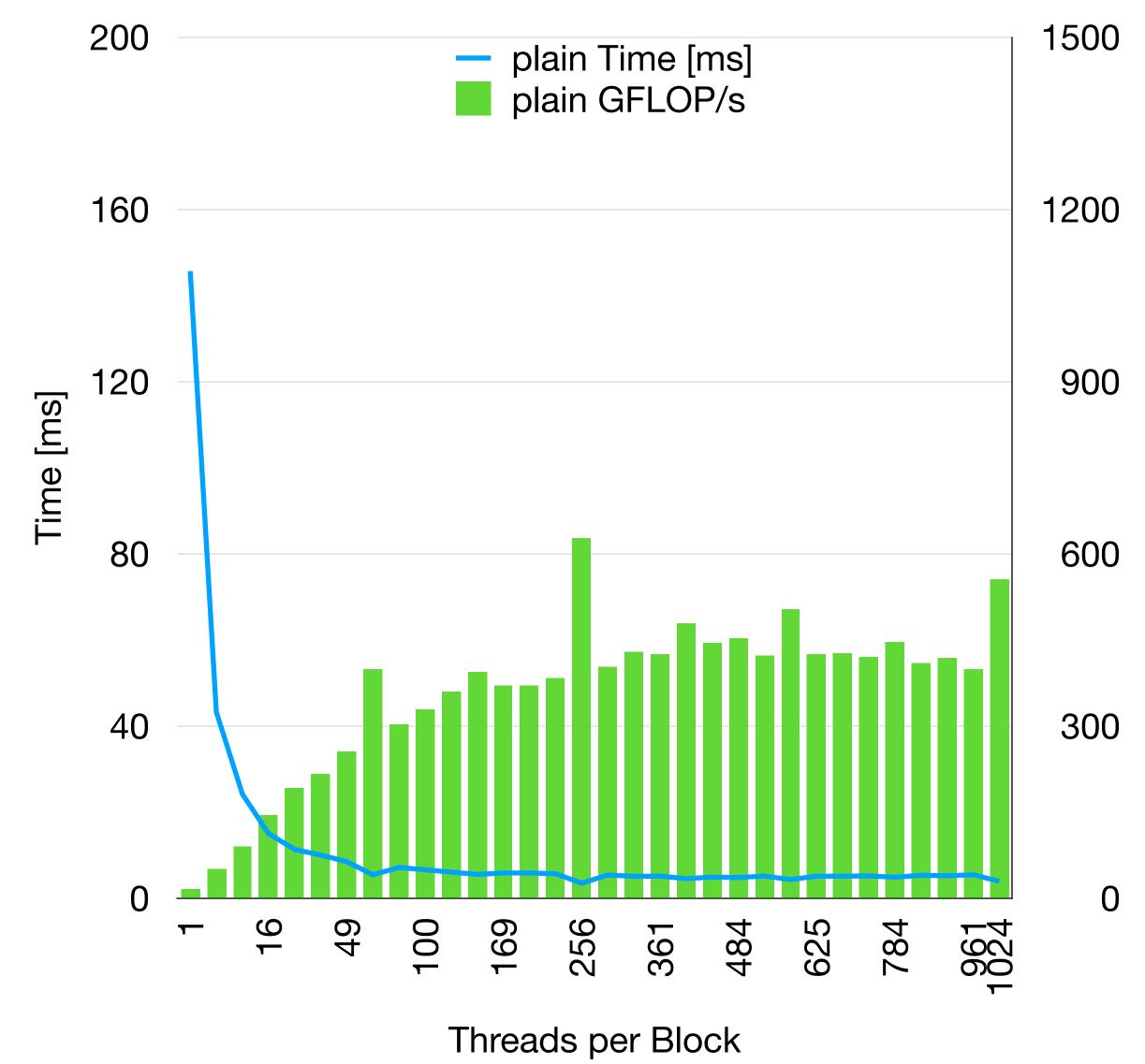
In general: "more threads are better", but not always like this -> e.g. register pressure

Calculating FLOP/s

N² elements, each 2N FLOPS, 2N³ FLOPs total

Here: 2.14 GFLOPS total

Without data movement



ANALYSIS - UPPER BOUND?

Model	CC Revi- sion	Total global memory [bytes]	Multi- proces sors	Cores	Total constant memory [bytes]	Shared memory per block [bytes]	Regis- ters per block	Warp size	Threads per block	Max dimen- sion of a block	Max. dimen- sion of a grid	Max. memory pitch [bytes]	Clock rate [GHz]	cop
GeForce GTX 480	2,0	1.5G	15	480	64k	48k	32k	32	1k	1k x 1k x 64	65535 x 65535 x 65535	2G	1,4	
Tesla K20c	3,5	5G	13	2496	64k	48k	64k	32	1k	1k x 1k x 64	2G x 65535 x 65535	2G	0,7	
RTX 2080Ti	7,5	11G	68	4352	64k	48k	64k	32	1k	1k x 1k x 64	2G x 65535 x 65535	2G	1,54	
		For	r single	e prec	cision: 4	352 * 1	.54 * 2	= 13	,404.16	GFLOP	/s (clo	ck boos	t)	

ANALYSIS - UPPER BOUND?

- Each thread works on global memory
 - 2 32bit accesses per SP Multiply-Add 4B per FLOP
- => 13 TFLOPs require 52 TB/s memory bandwidth RTX 2080Ti: 352bit * 1750MHz (14 Gbps effective) (GDDR6) = 616 GB/s Memory bandwidth limits performance to ~150 GFLOP/s
- GPU caches?
- -> Increase flop/memory ratio!
- -> Similar to blocking, but this time we have to define reuse manually

SHARED MEMORY OPTIMIZATIONS

SHARED MEMORY

On-chip memory

Lifetime: thread lifetime

Access costs in the best case equal register access

Organized in n banks

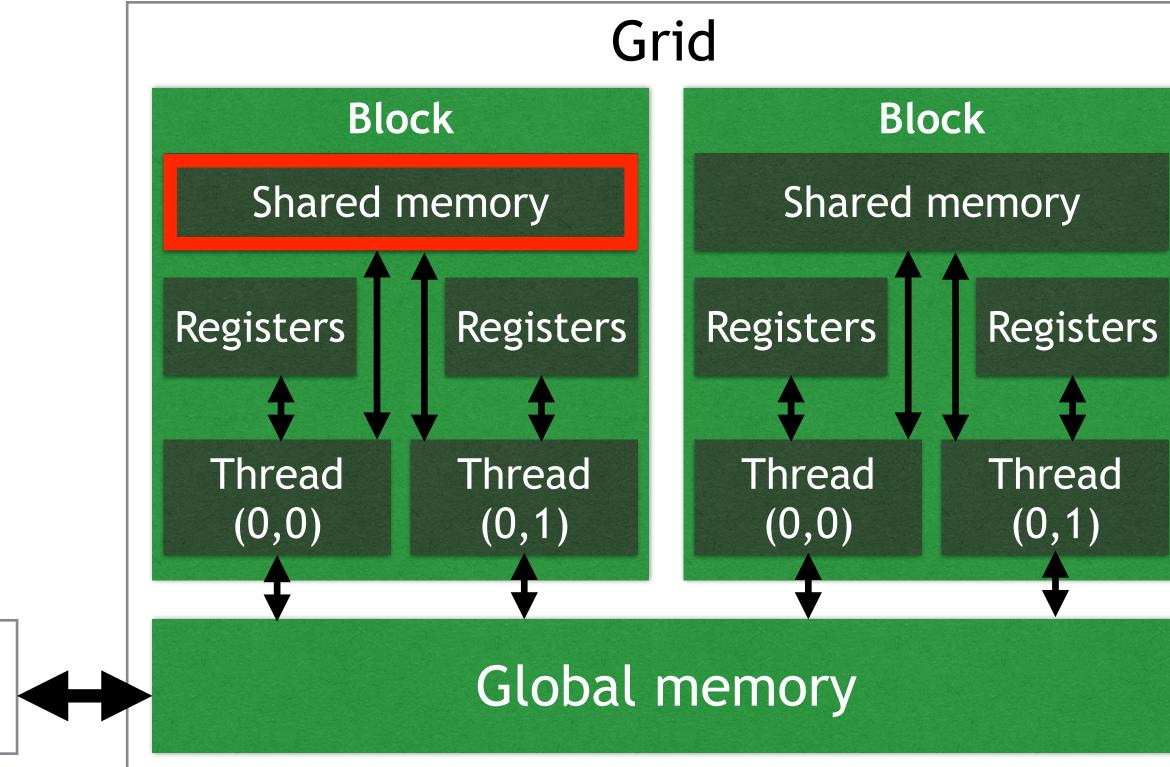
Typ. 16-32 banks with 32bit width

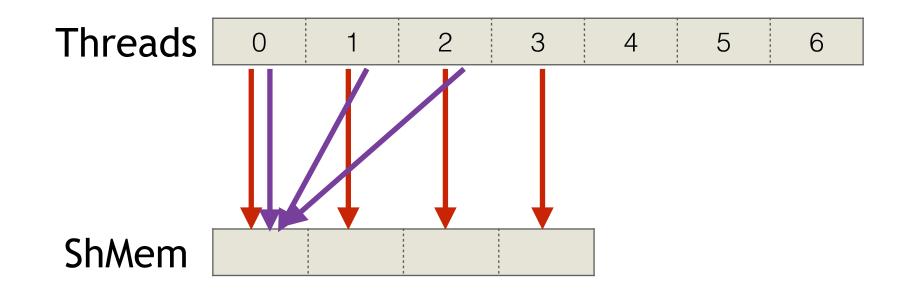
Host

Low-order interleaving

Parallel access if no conflict

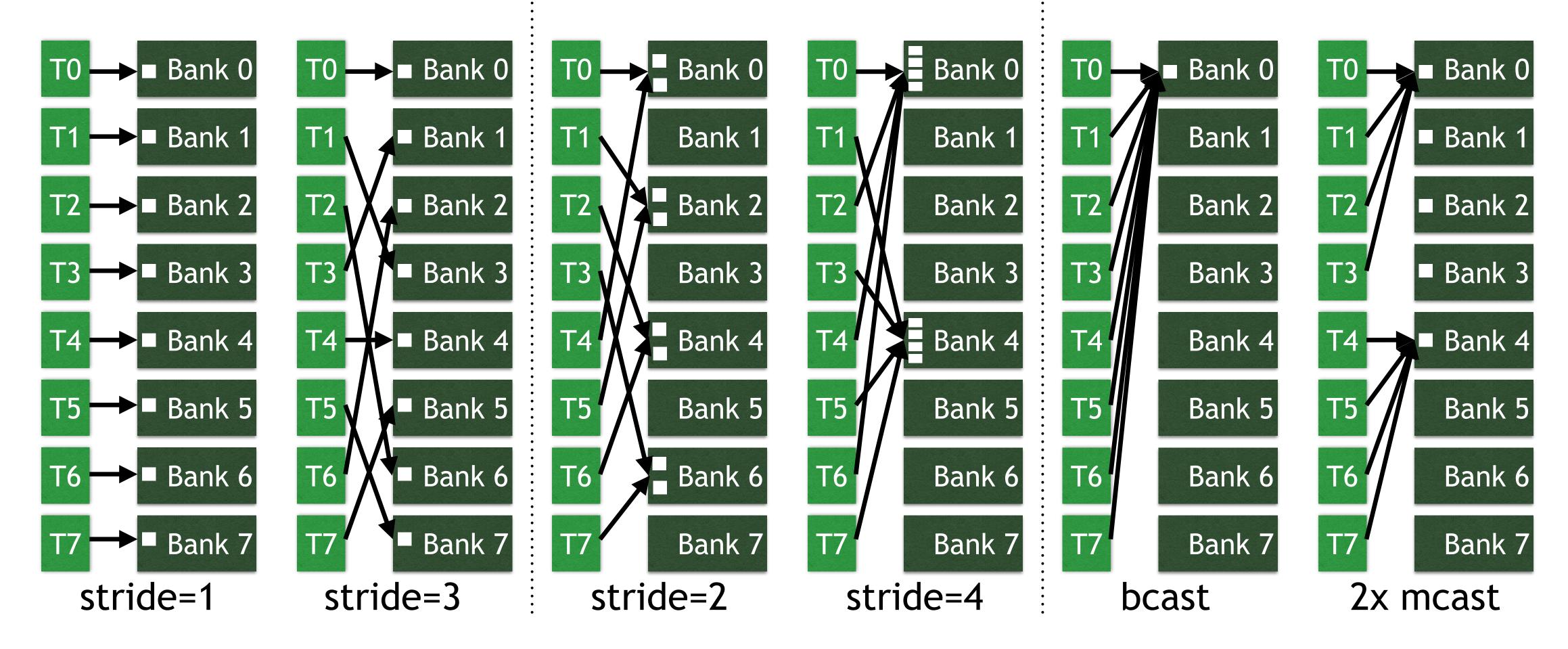
Conflicts result in access serialization





SHARED MEMORY BANK CONFLICTS

Shared memory bank access without blocking



Shared memory bank access with blocking

Multi- and broadcast meantime supported

TILING/BLOCKING

Associativity of C = A * B

Resorting the summation of the pairwise products

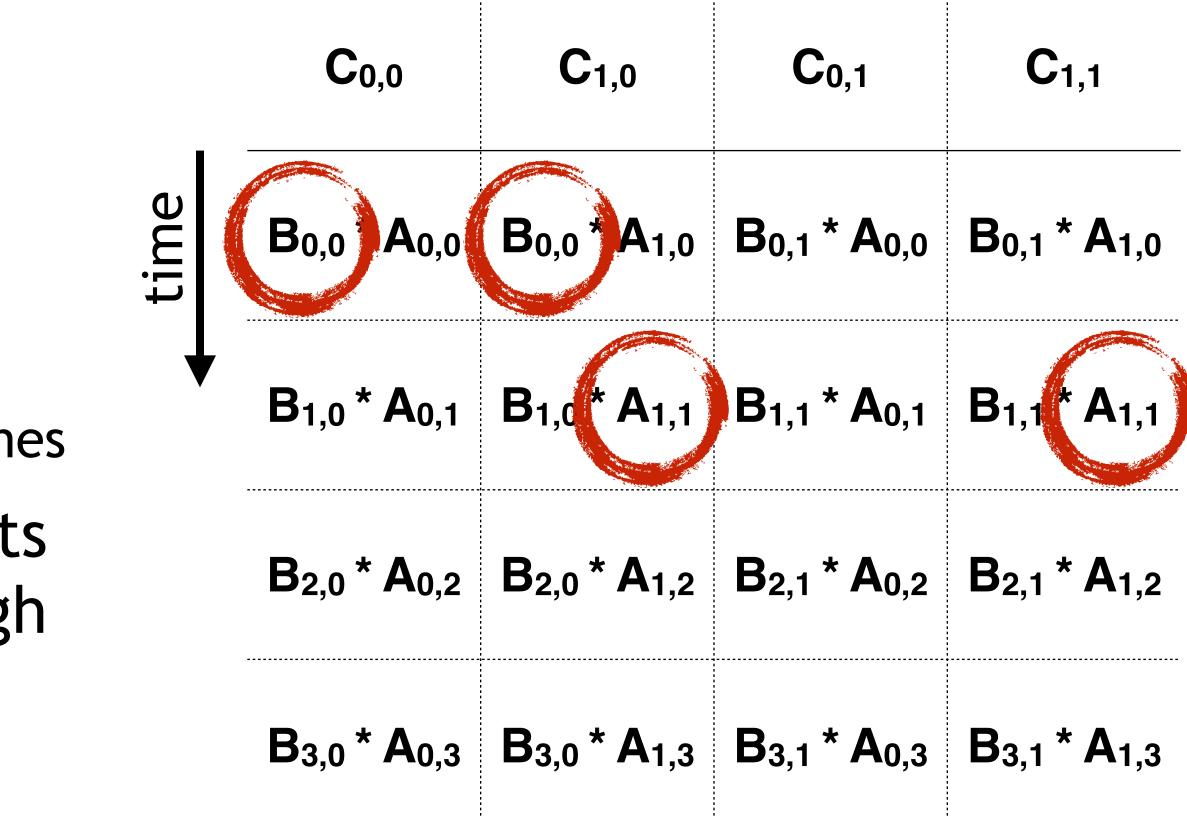
Increase locality by reordering memory accesses

=> Tiling or blocking

Each TxT tile uses each element T times

Calculate only parts of the elements of C, so that access pattern has high locality

Beneficial for both sequential and parallel algorithms



MATRIX MULTIPLY - SHARED MEMORY

Old: each input element is being read by TILE_WIDTH threads

New: is read by one thread, but used by multiple threads

Size of a sub-set should match a tile size

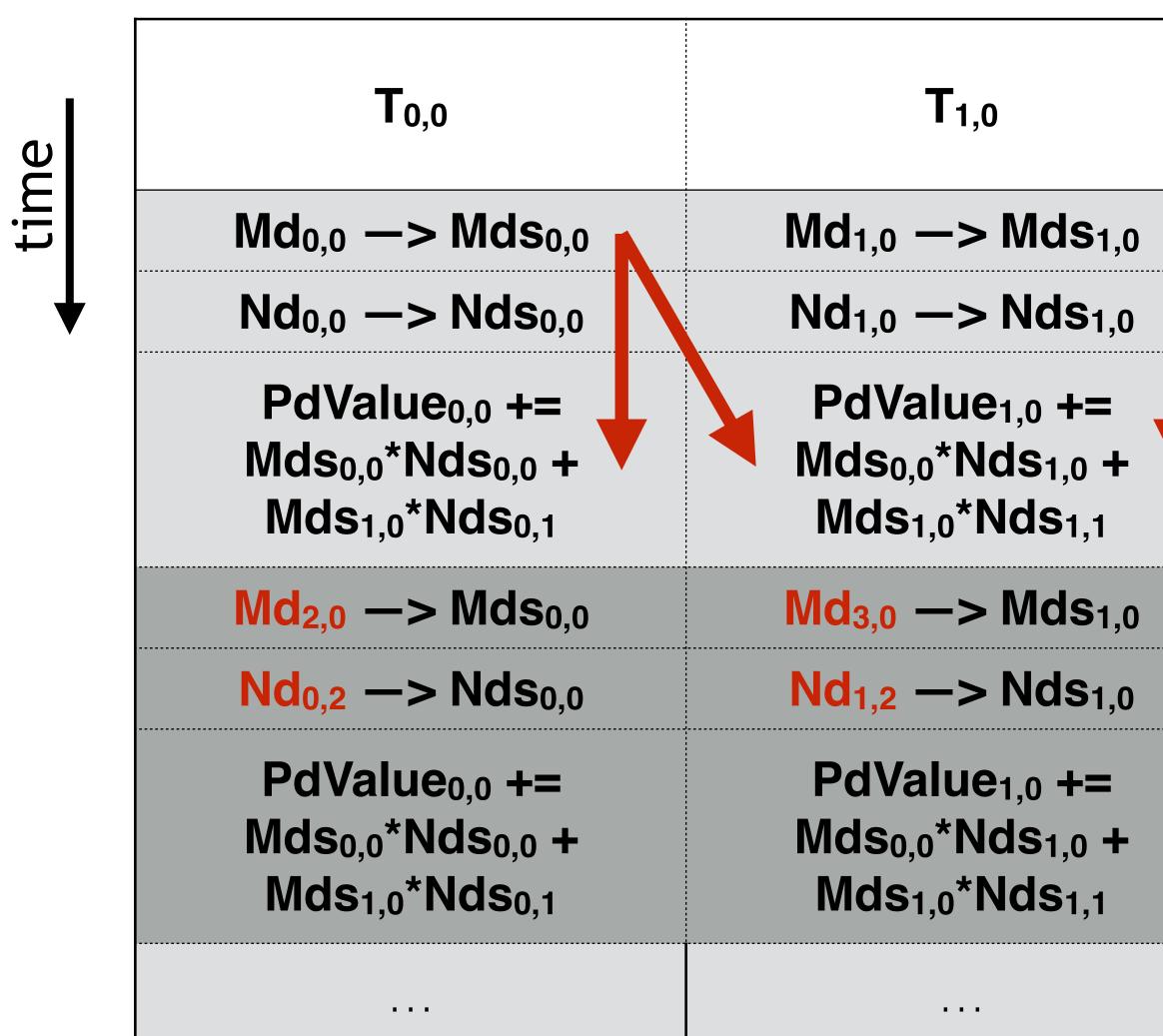
Separate kernel execution into phases

- 1. Fill shared memory
- 2. Execute
- 3. Repeat

				Nd			
			L				
Md				Pd			
Md				Pd			
Md				Pd			
Md				Pd			
				Pd			

grid = 3x3 blocks

SHARED MEMORY - PHASES FOR 2X2 TILE



T 0,1	T 1,1
$Md_{0,1} -> Mds_{0,1}$	$Md_{1,1} -> Mds_{1,1}$
Nd _{0,1} —> Nds _{0,1}	$Nd_{1,1} \longrightarrow Nds_{1,1}$
PdValue _{0,1} += Mds _{0,1} *Nds _{0,0} + Mds _{1,1} *Nds _{0,1}	PdValue _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}
Md _{2,1} —> Mds _{0,1}	Md _{3,1} —> Mds _{1,1}
Nd_{0,3} —> Nds_{0,1}	Nd_{1,3} —> Nds_{1,1}
PdValue _{0,1} += Mds _{0,1} *Nds _{0,0} + Mds _{1,1} *Nds _{0,1}	PdValue _{1,1} += Mds _{0,1} *Nds _{1,0} + Mds _{1,1} *Nds _{1,1}



NEW FLOP/MEMORY RATIO

Assuming a TILE_WIDTH of 16 and a 1k x 1k matrix 256 threads per block $1k/16 => 64 \times 64$ blocks Each block 2 loads per thread = 512 loads 16 MADDs per thread = 8k flops New flop/memory ratio 8k:512 = 16:116 FLOPS : 4 Bytes = 4 (good!)Plus improved coalescing

				Nd		
Md				Pd		
Md				Pd		
Md				Pd		
				Pd		
				Pd		

SHARED MEMORY IMPLEMENTATION

shared float Mds [TILEWIDTH] [TILEWIDTH]; shared float Nds [TILEWIDTH] [TILEWIDTH]; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int row = by * TILEWIDTH + ty; int col = bx * TILEWIDTH + tx; float Pvalue = 0;

if ! (Row > Width || Col > Width) { for (int m = 0; m < Width / TILEWIDTH; ++m) { // loop over tiles // Collaborative loading of Md and Nd tiles into shared memory Mds [ty] [tx] = Md [row * Width + (m * TILEWIDTH + tx)]; Nds [ty] [tx] = Nd [col + (m * TILEWIDTH + ty) * Width];

for (int k = 0; k < TILEWIDTH; ++k) Pvalue += Mds[ty][k] * Nds[k][tx];

Pd[row * Width + col] = Pvalue;

global void MM SM (float* Md, float* Nd, float* Pd, int Width)

Something is missing here!

SHARED MEMORY IMPLEMENTATION

shared float Mds [TILEWIDTH] [TILEWIDTH]; shared float Nds [TILEWIDTH] [TILEWIDTH]; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int row = by * TILEWIDTH + ty; int col = bx * TILEWIDTH + tx; float Pvalue = 0;

if !(Row > Width || Col > Width) { for (int m = 0; m < Width / TILEWIDTH; ++m) { // loop over tiles // Collaborative loading of Md and Nd tiles into shared memory Mds [ty] [tx] = Md [row * Width + (m * TILEWIDTH + tx)]; Nds [ty] [tx] = Nd [col + (m * TILEWIDTH + ty) * Width]; syncthreads();

for (int k = 0; k < TILEWIDTH; ++k) Pvalue += Mds[ty][k] * Nds[k][tx]; syncthreads ();

Pd[row * Width + col] = Pvalue;

global void MM SM (float* Md, float* Nd, float* Pd, int Width)

Dependencies resolved using synchronization

SHARED MEMORY RESULTS

Performance comparison for RTX 2080

Tiled only

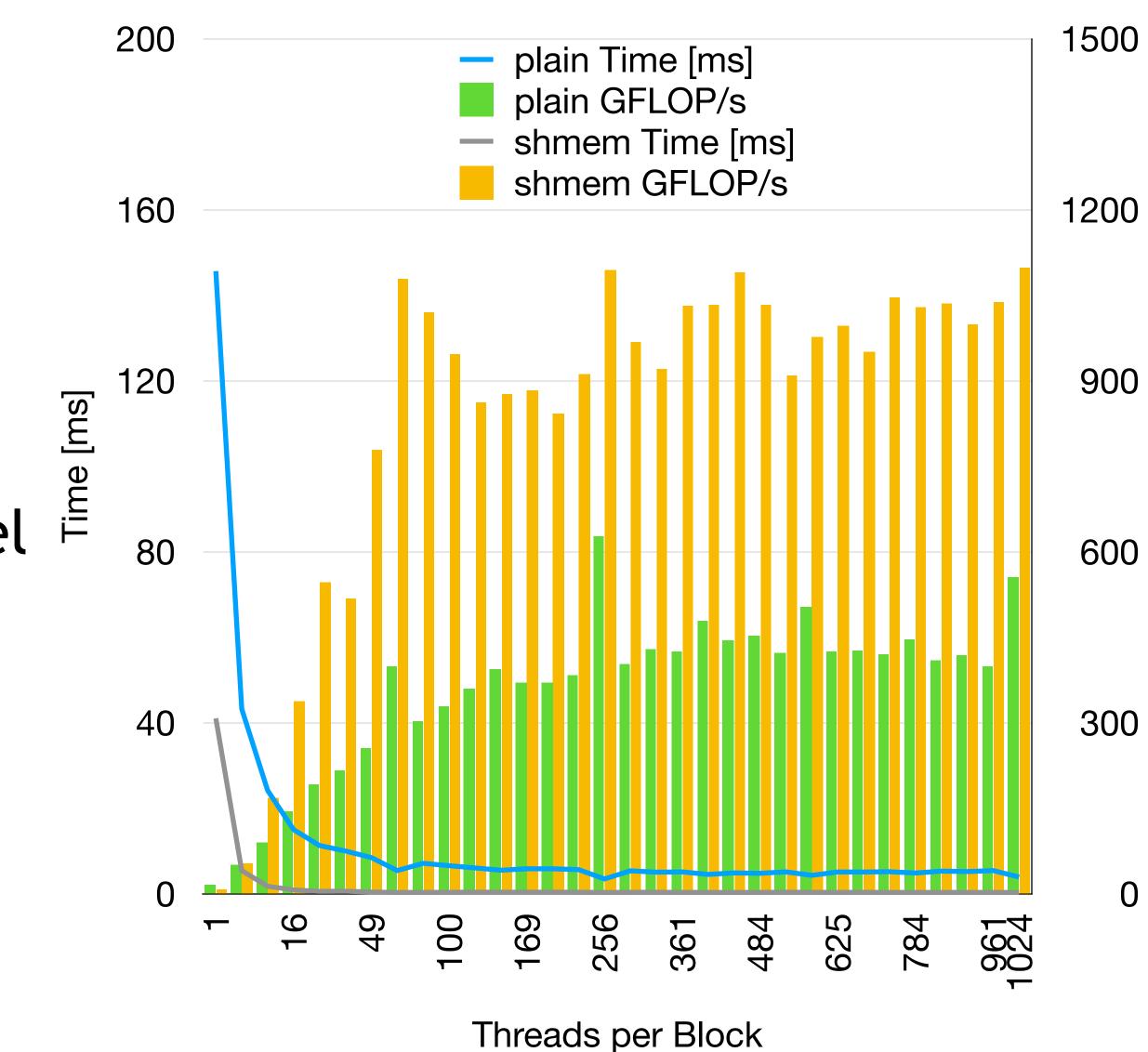
Use of shared memory

Block size <= 1k

Both code optimizations and kernel launch configuration matters!

Still a gap of about 10x to peak performance

Note: GPU's L1 cache was turned off



POSSIBLE FURTHER OPTIMIZATIONS

Multiple output values per thread

- Reduces the pressure on shared memory as tile data can be used in multiple calculations ILP optimization
- Bank conflicts in shared memory

Use nvprof to find out about such conflicts

Vectorize shared memory loads and stores by using compound data types

float2/float4

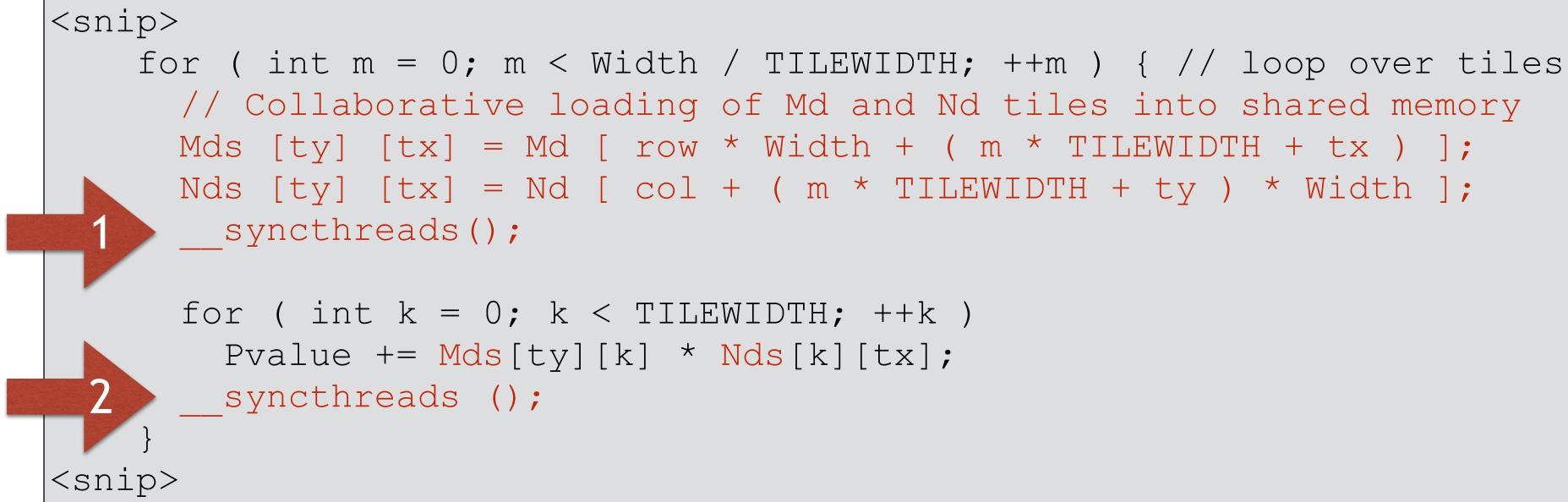
Effective shared memory bandwidth should increase

Double buffering by overlapping shared memory load for first set while second set is computed

Effective latency hiding

Requirements on shared memory capacity double

THREE TYPES OF DEPENDENCIES



RAW: true or data dependency

True dependency, so only solvable using synchronization, see (1)

WAR: anti dependency

Is a name dependency, solvable using synchronization or renaming, see (2)

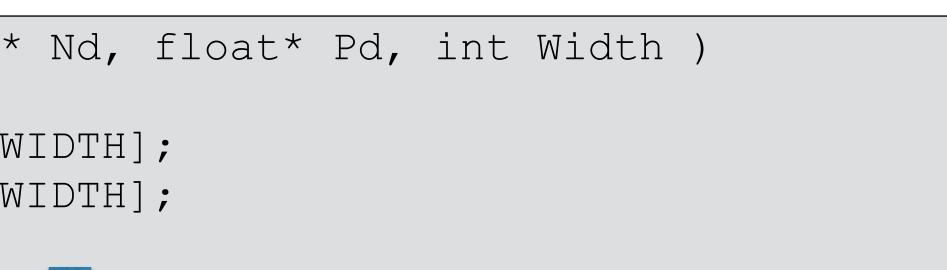
WAW: output dependency

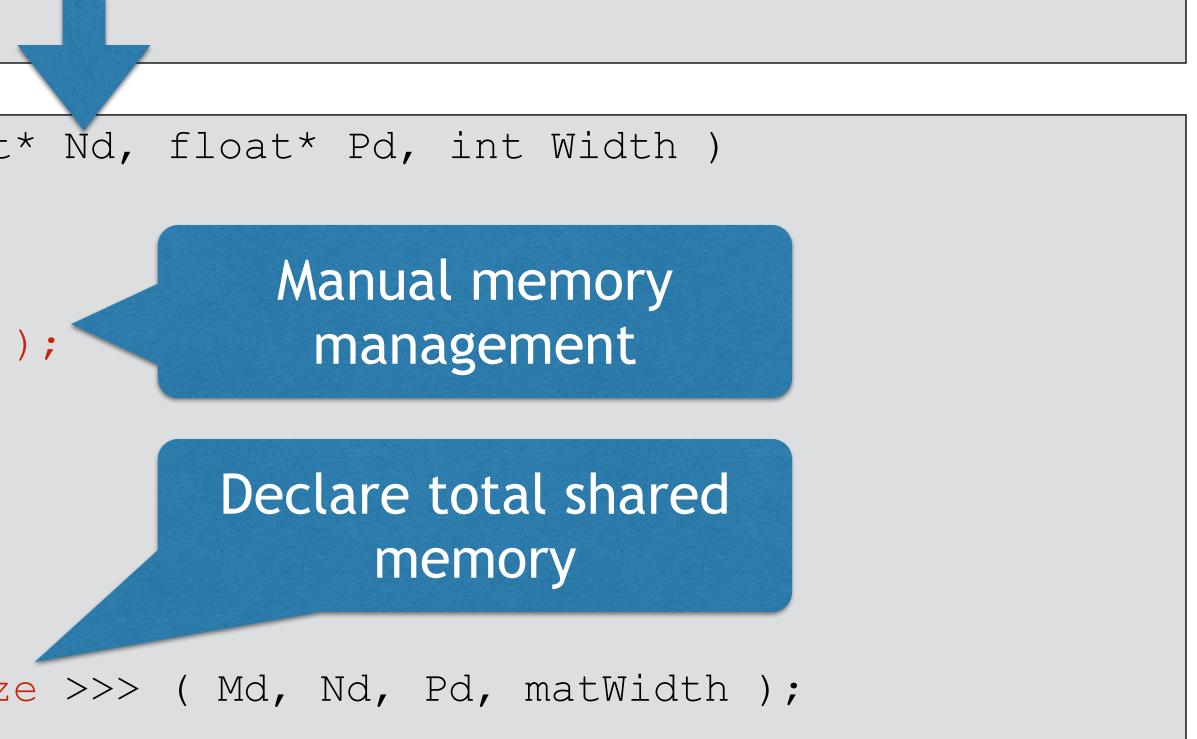
Is a name dependency, solvable using synchronization or renaming, n.a. here

SHARED MEMORY ALLOCATIONS

global void MM SM (float* Md, float* Nd, float* Pd, int Width) shared float Mds [TILEWIDTH] [TILEWIDTH]; shared float Nds [TILEWIDTH] [TILEWIDTH]; • • •

```
global void MM SM ( float* Md, float* Nd, float* Pd, int Width )
 extern shared float mem ds [];
  float *Mds = \& (mem ds [0]);
  float *Nds = & ( mem ds [size of Mds] );
  • • •
int main ()
  MM SM <<< dimGrid, dimBlock, sharedSize >>> ( Md, Nd, Pd, matWidth );
  • • •
```





WRAPPING UP

SUMMARY

memory

Mind the synchronization within the thread block

Dependencies = race conditions

model

Leverage that for data reuse!

Collective memory access, so mind dependencies!

Usually one thread will fetch data for other threads to maximize coalescing

Further candidates for matrix multiply optimizations

ILP, vectorized memory accesses, fix bank conflicts, double buffering

- Matrix multiply as a good example to leverage locality using the shared

 - Threads are scheduled in warps, threads per warp might not match the scratchpad use
- Shared memory about 10x faster than global memory in terms of bandwidth

