
GPU COMPUTING
LECTURE 05 - PARALLEL COMPUTING

Kazem Shekofteh
Kazem.shekofteh@ziti.uni-heidelberg.de

Institute of Computer Engineering
Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Fröning

PARALLELISM

OBVIOUS TRENDS

Sequential vs. parallel processing completely different

Multi-/Many-core era
Applications designed for single-core

Concurrency is fundamental for algorithms and applications

Number of cores/CPU increasing
Scalability also fundamental

Further motivations
Performance increase, distributed systems, tolerating I/O Blocking

3

Parallel programming: Concurrency & Scalability (I & II)

CONCURRENCY
Sequential program

Single thread of control

Instructions executed sequentially

Concurrent program
Several autonomous sequential threads

Parallel execution possible

Execution determined by implementation

Implementations
Multi-programming: executing multiple threads on a single resource (interleaving)

Multi-processing: executing multiple threads on multiple resources (independent
of scale)

4

CONCURRENCY VS. PARALLELISM

Concurrency is not parallelism!
E.g., concurrency by interleaving

Concurrency = independency
Concurrent instruction streams can
be executed independently

E.g., in parallel

Pipelining versus replication
in-order vs. out-of-order pipelining

5

T1

T2

T3

T4

T5

T6

T7

T8

T1

T2

T3

T4

T4

T5

T1

T2

T3

T4

T1

T2

T3

LEVELS OF (HW) PARALLELISM
MODERN APPROACH

Instruction Level Parallelism (ILP)
Parallelism of one instruction stream

Huge amount of dependencies and
branches

Limited parallelism (~4-6)

Thread Level Parallelism (TLP)
Parallelism of multiple independent
instruction streams

Less amount of dependencies, no
limitations due to branches

Limited by the maximum number of
concurrently executable I-streams

Data Level Parallelism (DLP)
Applying one operation on multiple
independent elements

Parallelism depends on data
structure

Vectorization techniques

Request Level Parallelism (RLP)
Datacenter (Warehouse-scale
computers)

Many requests from many users

6

PROCESSOR EXAMPLES
Exploiting parallelism in
different architectures

Issue slots shown

Dashed line: partition boundary

Horizontal waste

Vertical waste

ILP: parallelism from the same
thread

TLP: parallelism from
different threads

DLP: parallelism from multiple
data elements

7

COMMUNICATION AND COMPUTE MODEL

NON-UNIFORM MEMORY ACCESS

9

single-stage switch

M1

P2

M0

P0 P1

equidistant

M1

P2

M0

P0 P1

inequidistant

single-stage switch

M1M0

P0

m0

P1

m2

P0

m1

inequidistant

Parallel programming: Locality (III)

COMMUNICATION MODELS
Plain load/store (LD/ST) - shared memory systems

Never designed for communication

Can be fast for SMP, but often unknown costs for NUMA

Assumption of perfectly timed load seeing a store

Message passing (MP) - de-facto standard in HPC
Various p2p and collective functions

Mainly send/recv semantics used - ease-of-use

Overhead due to: copying, matching, progress, ordering

Many more
Active messages - latency tolerance becomes a
programming/compiling concern

One-sided communication (put/get) - never say receive

Main objective: latency tolerance using overlap

10

T0
SHARED

MEM T1
store

load

Match

P0
LOCAL
MEM P1

LOCAL
MEM

send (X, 1, tag)

recv (Y, 0, tag)

LATENCY TOLERANCE TECHNIQUES

11

Property Relaxed Consistency Models Prefetching Multi-Threading Block Data
Transfer

Types of
latency

tolerated

Write (blocking read processors)
Read and write (dynamically

scheduled processors)
Write
Read

Write
Read

Synchronization

Write
Read

Software
requirements

Labeling synchronization
operations Predictability Explicit extra

concurrency

Identifying and
orchestrating

block transfers

Extra
hardware
support

Little Little Substantial
Not in processor,
but in memory

system

Supported in
commercial

systems?
Yes Yes Yes (Yes)

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach,
Morgan Kaufmann,1998

SYNCHRONIZATION

Foundation: dependencies that are being solved using synchronization
Communication can include synchronization, but not vice versa

Communication & synchronization
Explicit / implicit

SIMD: one instruction stream, no synchronization necessary
Reminder: vector packing requires reasoning about dependencies (resp. their absence)

MIMD: synchronization necessary
Shared variables, process synchronization, blocking message exchange

12

Synchronization is the enforcement of a defined logical order between events. This
establishes a defined time-relation between distinct places, thus defining their

behavior in time.

COMPUTE MODEL
No one wants to write N programs for N processors

Reminder: scalability

Single-Program-Multiple Data (SPMD)
Single program that distinguishes different tasks based on task ID

Producer-Consumer, Master-Slave, Peer

Composition
Sequential composition: data-parallel languages or SIMD

Parallel composition: different modules operate on disjoint sets of
processors (e.g., MPI)

Concurrent composition: different modules can operate on the
same processors, and execution depends only on availability of
data

13

Parallel programming: Modularity (IV)

Sequential composition

Parallel composition

Concurrent composition

PARALLELISM

14

Parallel programming: Modularity (IV)

Parallel programming: Concurrency & Scalability (I & II)

Parallel programming: Locality (III)

ALGORITHM DESIGN

FOSTER’S PCAM

Partition

Communicate

Agglomerate

Map

16

}
}ar

ch
it

ec
tu

re

in
de

pe
nd

en
t

ar
ch

it
ec

tu
re

de

pe
nd

en
t

Task

Task

Task

Task

Task

Task

Book is online at:
http://www.mcs.anl.gov/~itf/dbpp

http://www.mcs.anl.gov/~itf/dbpp

PARTITIONING

Ignore technical aspects like number of processing units

Maximal granularity
Number of Tasks >> Number of Processors

Partition computation and data
Domain Decomposition

Functional Decomposition

Pipeline Decomposition

Avoid replication, disjoint partitioning
See also minimization of communication

17

Task

Task

Task

Task

Task

Task

PARTITIONING
Domain Decomposition

Typical uses: data parallelism, e.g. arrays &
trees

Functional Decomposition
Typical uses: function calls, different loop
iterations

Pipeline Decomposition
Data flow through multiple pipeline stages

Instruction pipelining in modern CPUs

18

Atmospheric Model

Hydrology
Model

Land Surface Model

Ocean
Model

Climate Computing Model

Task 0

Task 1

Task 2

Task 3

COMMUNICATE

Execution of partitions concurrently, but not
independently

Data dependencies -> communication & synchronization
Complex for DD, rather simple for FD

Local/global, structured/unstructured, static/dynamic,
synchronous/asynchronous

=> Communication scheme

Data-parallel language
Requires data-parallel operations and data distribution

Channels actually not necessary, but help for locality and
communication costs

19

Task

Task

Task

Task

Task

Task

LOCAL COMMUNICATION
Example for local communication: stencil operation

Simple numerical computation: finite difference method
(iterative method used to solve a linear system of equations)

Gauss-Seidel (GS)

vs. Jacobi

GS optimal for sequential execution (fewer iterations)
But too many dependencies for parallel execution

Diagonal wave front or Red/Black method

Jacobi: no inter-iteration dependencies => unconstrained parallelization

20

8
4)(

1,
)1(
1,

)(
,1

)1(
,1

)(
,)1(

,

t
ji

t
ji

t
ji

t
ji

t
jit

ji

XXXXX
X +

+
-+

+
-+ ++++

=

8
4)(

1,
)(
1,

)(
,1

)(
,1

)(
,)1(

,

t
ji

t
ji

t
ji

t
ji

t
jit

ji

XXXXX
X +-+-+ ++++

=

i

j

i

j

LOCAL COMMUNICATION EXAMPLE

Two finite difference update strategies, here applied on a two-dimensional grid with a five-point stencil. In both figures,
shaded grid points have already been updated to step t+1 ; unshaded grid points are still at step t . The arrows show data

dependencies for one of the latter points. The figure on the left illustrates a simple Gauss-Seidel scheme and highlights the five
grid points that can be updated at a particular point in time. In this scheme, the update proceeds in a wavefront from the top

left corner to the bottom right. On the right, we show a red-black update scheme. Here, all the grid points at step t can be
updated concurrently.

[http://www.mcs.anl.gov/~itf/dbpp]

Excellent example that code optimized for sequential execution often has to
be completely rewritten

21

http://www.mcs.anl.gov/~itf/dbpp

GLOBAL COMMUNICATION
Global communication

E.g. global addition (parallel reduction)

Cons: O(N), centralized & sequential

More equal distribution of computation
and communication, O(N-1)

Divide & conquer to exploit parallelism
Tree structures, as long as partitions can
be computed independently

Associativity of addition, O(log N)

22

å
-

=

=
1

0

N

i
iXS

1-+= iii SXS

GLOBAL COMMUNICATION EXAMPLE

23http://www.mcs.anl.gov/~itf/dbpp

å
-

=

=
1

0

N

i
iXS 1-+= iii SXS

<latexit sha1_base64="2/XxM3KfxXb5s+QXS2bTPT83UKQ=">AAACL3icbZDLSsNAFIYn9VbrLerSTbAIFbEkRdFNoSiIywr2Am0aJtNJO3QyCTMToYS8kRtfpRsRRdz6Fk7bWGzrgYGf7z+HM+d3Q0qENM03LbOyura+kd3MbW3v7O7p+wd1EUQc4RoKaMCbLhSYEoZrkkiKmyHH0HcpbriD27HfeMJckIA9ymGIbR/2GPEIglIhR79ri8h3YlI2k05c6rBzKynPo7ig4GmijLNfYwZnM46eN4vmpIxlYaUiD9KqOvqo3Q1Q5GMmEYVCtCwzlHYMuSSI4iTXjgQOIRrAHm4pyaCPhR1P7k2ME0W6hhdw9Zg0JvTvRAx9IYa+qzp9KPti0RvD/7xWJL1rOyYsjCRmaLrIi6ghA2McntElHCNJh0pAxIn6q4H6kEMkVcQ5FYK1ePKyqJeK1mXRfLjIV27SOLLgCByDArDAFaiAe1AFNYDAMxiBd/ChvWiv2qf2NW3NaOnMIZgr7fsHvzOnnw==</latexit>

2n�1X

i=0

=
2(n�1)�1X

i=0

+
2n�1X

i=2(n�1)

Approach 1

central accumulator

Approach 2

Array structure of N tasks

(improved pipelining possibilities)

Approach 3

divide-and-conquer

(increase parallelism)

http://www.mcs.anl.gov/~itf/dbpp

AGGLOMERATION
Increasing granularity (coarse-grain)

From the abstract to the concrete

Fixing the parallel computing model

Maintaining flexibility, therefore reducing development costs

Number of tasks T >= number of processors P

Reducing communication costs
Fixed & variable fraction (surface-to-volume effects)

Depending on use case:
One order of magnitude more Ts than Ps (parallel slackness)

HPC: T = P

SIMD: T = 1

24

AGGLOMERATION EXAMPLE

Replication of data and computation
to reduce communication

Example: global sum with broadcast

Chained
2(N-1) steps (sum & broadcast)

-> Redundant computation in a ring, no
broadcast ((N-1))

Tree-based
2 log N steps (sum & broadcast)

-> Redundant computation in a
butterfly, no broadcast (log N)

25

å
-

=

=
1

0

N

i
iXS

0 1 2

0

1

2

3

MAPPING

Assignment: task <—> processor & memory
Place tasks that can execute concurrently on different processors

Place tasks that communicate frequently on the same processor

Note that this implies conflicts

Mapping not necessary for
Uni-processors or shared memory systems with automatic mapping

Hardware mechanism or the OS responsible for scheduling

Mapping problem is NP-complete

26

SUMMARY

SUMMARY

Concurrency and parallelism of fundamental importance
Granularity

ILP, TLP, DLP

Characteristics of “good” parallel programs
Concurrency, Scalability, Locality and Modularity

Algorithm design
PCAM: Partition, Communicate, Agglomerate, Map

Literature
Foster Online: http://www.mcs.anl.gov/~itf/dbpp

28

http://www.mcs.anl.gov/~itf/dbpp

APPENDIX

PARTITIONING

Identify possible decomposition
techniques

Domain Decomposition (red)

Functional Decomposition (green)

Pipeline Decomposition (blue)

30

