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PARALLELISM



OBVIOUS TRENDS

Sequential vs. parallel processing completely different 

Multi-/Many-core era 
Applications designed for single-core 

Concurrency is fundamental for algorithms and applications 

Number of cores/CPU increasing 
Scalability also fundamental 

Further motivations 
Performance increase, distributed systems, tolerating I/O Blocking
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Parallel programming: Concurrency & Scalability (I & II)



CONCURRENCY
Sequential program 

Single thread of control 

Instructions executed sequentially 

Concurrent program 
Several autonomous sequential threads 

Parallel execution possible 

Execution determined by implementation 

Implementations 
Multi-programming: executing multiple threads on a single resource (interleaving) 

Multi-processing: executing multiple threads on multiple resources (independent 
of scale)
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CONCURRENCY VS. PARALLELISM

Concurrency is not parallelism! 
E.g., concurrency by interleaving 

Concurrency = independency 
Concurrent instruction streams can 
be executed independently 

E.g., in parallel 

Pipelining versus replication 
in-order vs. out-of-order pipelining
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LEVELS OF (HW) PARALLELISM 
MODERN APPROACH

Instruction Level Parallelism (ILP) 
Parallelism of one instruction stream 

Huge amount of dependencies and 
branches 

Limited parallelism (~4-6) 

Thread Level Parallelism (TLP) 
Parallelism of multiple independent 
instruction streams 

Less amount of dependencies, no 
limitations due to branches 

Limited by the maximum number of  
concurrently executable I-streams 

Data Level Parallelism (DLP) 
Applying one operation on multiple 
independent elements 

Parallelism depends on data 
structure 

Vectorization techniques 

Request Level Parallelism (RLP) 
Datacenter (Warehouse-scale 
computers) 

Many requests from many users 
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PROCESSOR EXAMPLES
Exploiting parallelism in 
different architectures 

Issue slots shown 

Dashed line: partition boundary  

Horizontal waste 

Vertical waste 

ILP: parallelism from the same 
thread 

TLP: parallelism from 
different threads 

DLP: parallelism from multiple 
data elements 
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COMMUNICATION AND COMPUTE MODEL



NON-UNIFORM MEMORY ACCESS

9

single-stage switch

M1

P2

M0

P0 P1

equidistant

M1

P2

M0

P0 P1

inequidistant

single-stage switch

M1M0

P0

m0

P1

m2

P0

m1

inequidistant

Parallel programming: Locality (III)



COMMUNICATION MODELS
Plain load/store (LD/ST) - shared memory systems 

Never designed for communication 

Can be fast for SMP, but often unknown costs for NUMA 

Assumption of perfectly timed load seeing a store  

Message passing (MP) - de-facto standard in HPC 
Various p2p and collective functions 

Mainly send/recv semantics used - ease-of-use 

Overhead due to: copying, matching, progress, ordering 

Many more 
Active messages - latency tolerance becomes a 
programming/compiling concern  

One-sided communication (put/get) - never say receive 

Main objective: latency tolerance using overlap
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LATENCY TOLERANCE TECHNIQUES
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Property Relaxed Consistency Models Prefetching Multi-Threading Block Data 
Transfer

Types of 
latency 

tolerated

Write (blocking read processors) 
Read and write (dynamically 

scheduled processors) 
Write 
Read

Write 
Read 

Synchronization

Write 
Read

Software 
requirements

Labeling synchronization 
operations Predictability Explicit extra 

concurrency

Identifying and 
orchestrating 

block transfers

Extra 
hardware 
support

Little Little Substantial
Not in processor, 
but in memory 

system

Supported in 
commercial 

systems?
Yes Yes Yes (Yes)

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach, 
Morgan Kaufmann,1998



SYNCHRONIZATION

Foundation: dependencies that are being solved using synchronization 
Communication can include synchronization, but not vice versa 

Communication & synchronization 
Explicit / implicit 

SIMD: one instruction stream, no synchronization necessary 
Reminder: vector packing requires reasoning about dependencies (resp. their absence) 

MIMD: synchronization necessary 
Shared variables, process synchronization, blocking message exchange
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Synchronization is the enforcement of a defined logical order between events. This 
establishes a defined time-relation between distinct places, thus defining their 

behavior in time.



COMPUTE MODEL
No one wants to write N programs for N processors 

Reminder: scalability  

Single-Program-Multiple Data (SPMD) 
Single program that distinguishes different tasks based on task ID 

Producer-Consumer, Master-Slave, Peer 

Composition 
Sequential composition: data-parallel languages or SIMD 

Parallel composition: different modules operate on disjoint sets of 
processors (e.g., MPI) 

Concurrent composition: different modules can operate on the 
same processors, and execution depends only on availability of 
data
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Parallel programming: Modularity (IV)

Sequential composition

Parallel composition

Concurrent composition



PARALLELISM
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Parallel programming: Modularity (IV)

Parallel programming: Concurrency & Scalability (I & II)

Parallel programming: Locality (III)



ALGORITHM DESIGN 



FOSTER’S PCAM

Partition 

Communicate 

Agglomerate 

Map
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Book is online at: 
http://www.mcs.anl.gov/~itf/dbpp 

http://www.mcs.anl.gov/~itf/dbpp


PARTITIONING

Ignore technical aspects like number of processing units 

Maximal granularity 
Number of Tasks >> Number of Processors 

Partition computation and data 
Domain Decomposition 

Functional Decomposition 

Pipeline Decomposition 

Avoid replication, disjoint partitioning 
See also minimization of communication
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PARTITIONING
Domain Decomposition 

Typical uses: data parallelism, e.g. arrays & 
trees 

Functional Decomposition 
Typical uses: function calls, different loop 
iterations 

Pipeline Decomposition 
Data flow through multiple pipeline stages  

Instruction pipelining in modern CPUs
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COMMUNICATE

Execution of partitions concurrently, but not 
independently 

Data dependencies -> communication & synchronization 
Complex for DD, rather simple for FD 

Local/global, structured/unstructured, static/dynamic, 
synchronous/asynchronous 

=> Communication scheme 

Data-parallel language 
Requires data-parallel operations and data distribution 

Channels actually not necessary, but help for locality and 
communication costs
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LOCAL COMMUNICATION
Example for local communication: stencil operation 

Simple numerical computation: finite difference method  
(iterative method used to solve a linear system of equations) 

Gauss-Seidel (GS) 

vs. Jacobi  

GS optimal for sequential execution (fewer iterations) 
But too many dependencies for parallel execution 

Diagonal wave front or Red/Black method 

Jacobi: no inter-iteration dependencies => unconstrained parallelization
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LOCAL COMMUNICATION EXAMPLE

Two finite difference update strategies, here applied on a two-dimensional grid with a five-point stencil. In both figures, 
shaded grid points have already been updated to step t+1 ; unshaded grid points are still at step t . The arrows show data 

dependencies for one of the latter points. The figure on the left illustrates a simple Gauss-Seidel scheme and highlights the five 
grid points that can be updated at a particular point in time. In this scheme, the update proceeds in a wavefront from the top 

left corner to the bottom right. On the right, we show a red-black update scheme. Here, all the grid points at step t can be 
updated concurrently.  

[http://www.mcs.anl.gov/~itf/dbpp] 

Excellent example that code optimized for sequential execution often has to 
be completely rewritten
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GLOBAL COMMUNICATION
Global communication 

E.g. global addition (parallel reduction) 

Cons: O(N), centralized & sequential 

More equal distribution of computation 
and communication, O(N-1) 

Divide & conquer to exploit parallelism 
Tree structures, as long as partitions can 
be computed independently 

Associativity of addition, O(log N)
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GLOBAL COMMUNICATION EXAMPLE
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Approach 1 

central accumulator

Approach 2 

Array structure of N tasks 

(improved pipelining possibilities)

Approach 3 

divide-and-conquer 

(increase parallelism)
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AGGLOMERATION
Increasing granularity (coarse-grain) 

From the abstract to the concrete 

Fixing the parallel computing model 

Maintaining flexibility, therefore reducing development costs 

Number of tasks T >= number of processors P 

Reducing communication costs 
Fixed & variable fraction (surface-to-volume effects) 

Depending on use case:  
One order of magnitude more Ts than Ps (parallel slackness) 

HPC: T = P 

SIMD: T = 1
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AGGLOMERATION EXAMPLE

Replication of data and computation 
to reduce communication 

Example: global sum with broadcast 

Chained 
2(N-1) steps (sum & broadcast) 

-> Redundant computation in a ring, no 
broadcast ((N-1)) 

Tree-based 
2 log N steps (sum & broadcast) 

-> Redundant computation in a 
butterfly, no broadcast (log N)
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MAPPING

Assignment: task <—> processor & memory 
Place tasks that can execute concurrently on different processors 

Place tasks that communicate frequently on the same processor 

Note that this implies conflicts 

Mapping not necessary for 
Uni-processors or shared memory systems with automatic mapping 

Hardware mechanism or the OS responsible for scheduling 

Mapping problem is NP-complete
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SUMMARY



SUMMARY

Concurrency and parallelism of fundamental importance 
Granularity 

ILP, TLP, DLP 

Characteristics of “good” parallel programs 
Concurrency, Scalability, Locality and Modularity 

Algorithm design 
PCAM: Partition, Communicate, Agglomerate, Map 

Literature 
Foster Online: http://www.mcs.anl.gov/~itf/dbpp  
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APPENDIX



PARTITIONING

Identify possible decomposition 
techniques 

Domain Decomposition (red) 

Functional Decomposition (green) 

Pipeline Decomposition (blue)
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