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REMINDER: SCHEDULING
Thread hierarchy: threads are organized in 
blocks, each thread block (Cooperative Thread 
Array, CTA1) can be mapped to one SM 

Parallel slackness leveraged to hide latencies 
In essence, memory access latencies 

Start many more threads/CTAs than resources 
available 

Thread block 
No dependencies/guarantees for different CTAs 

Up to 4 CTAs can be scheduled to one SM (for Kepler, 
implementation dependent) 

Threads within a block 
Warp of 32 threads as scheduling unit (for Kepler, 
implementation dependent) 

Implementation-dependent optimizations => 
compatibility and code maintenance issues
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REMINDER: SCHEDULING

How are CTAs executed? 
Abstraction that is defined by user 

Independent of the actual architecture 

=> CTAs are opaque to the user 

How are thread warps executed? 
Abstraction that is defined by JIT compiler 

Architecture-dependent 

=> Warps are transparent to the user 

Both are scheduling entities
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Threads in a CTA:

Actually look like this:

warp 0 warp 1 warp 2 warp 3

And are executed like this:

warp 0
warp 1
warp 2
warp 3
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OPTIMIZATIONS
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CUDA performance issues

Memory coalescing

Latency hiding Divergent branching Bank conflicts

Instruction overhead

Optimizations

Algorithmic optimizations
Kernel launch optimizations Code optimizations

Scheduling optimizations



REDUCTION EXAMPLE



PARALLEL REDUCTION

Common and important data parallel 
primitive 

Global sum, histogram, etc. 

Often associative operations -> reordering 
opportunity :) 

Pretty easy to implement in CUDA 
Way harder to get it right (fast) 

Optimization example for scheduling 
issues 

6 different versions here (could be more)

6

s =
NX

i=0

f(xi)

p =
NY

i=0

f(xi)

hk =
NX

i=0

(xi == k)?1 : 0



Tree-based reduction within each CTA 

=> Multiple CTAs required 
To process very large arrays 

For high utilization of the GPU (one CTA 
per SM) 

How to communicate/synchronize 
partial results between CTAs? 

Kernel completion boundaries to the 
rescue! 

I.e., kernel re-launch

CTA 2

CTA 1CTA 0

PARALLEL REDUCTION ON A GPU
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EXCURSION: GLOBAL SYNCHRONIZATION 
Global synchronization would solve this problem and many others 
easily 

But there is no global synchronization! Why? 

Global operations expensive under scalability constraints 
High SM count 

Impact on scheduling guarantees (progress) 
Scheduling is non-preemptive 

Can’t synchronize more CTAs than can execute concurrently 

Would limit block count to: #CTAs <= #SMs * resident_blocks_per_SM 

“Persistent threads” 

Conflictive with required parallel slackness to hide memory latency

8



KERNEL DECOMPOSITION 
Solution: decompose into multiple kernels 

Kernel completion boundary serves as global synchronization point 

Negligible HW overhead, low SW overhead 

For reductions, code for all levels is the same 
Associativity: a + (b + c) = (a + b) + c
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SIX REDUCTION OPTIMIZATIONS 



METHODOLOGY
4M elements 

Vary thread count (per CTA) for performance analysis 

Note that we keep thread count constant for all iterations 
Other solutions differ regarding this 

Subject to next optimization (exercise)
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__global__ void Reduction0a_kernel( int *out, int *in, size_t N ) 
{ 
    extern __shared__ int sPartials[]; 
    const int tid = threadIdx.x; 
    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
  
 // each thread loads one element from global to shared mem 
 sPartials[tid] = in[i]; 
 __syncthreads(); 
  
 // do reduction in shared mem 
 for ( unsigned int s = 1; s < blockDim.x; s *= 2 ) { 
  if ( tid % ( 2 * s ) == 0 ) { 
   sPartials[tid] += sPartials[tid + s]; 
  } 
  __syncthreads(); 
 } 
  
    if ( tid == 0 ) { 
        out[blockIdx.x] = sPartials[0];     
 } 
}

blockDim.x must be a 
power-of-two 

1. Collective load 
Coalescing issues? 

2. Utilization 
Every n-th thread 
computes, stride increases 
with loop iteration 

3. Synchronization 
Why syncthreads?

REDUCTION #1: INTERLEAVED ADDRESSING 
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Possible coalescing issue?



REDUCTION #1: INTERLEAVED ADDRESSING 

Two loads per thread, 
but sequentially
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REDUCTION #1: INTERLEAVED ADDRESSING 

Problem: branch divergence
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Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

 // do reduction in shared mem 
 for ( unsigned int s = 1; s < blockDim.x; s *= 2 ) { 
  if ( tid % ( 2 * s ) == 0 ) { 
   sPartials[tid] += sPartials[tid + s]; 
  } 
  __syncthreads(); 
 }



<snip> 
 // do reduction in shared mem 
 for ( unsigned int s = 1; s < blockDim.x; s *= 2 ) { 
  int index = 2 * s * tid; 
  if ( index < blockDim.x ) { 
   sPartials[index] += sPartials[index + s]; 
  } 
  __syncthreads(); 
 } 
<snip>

Solution: re-sort add ops 

Modified if-clause

REDUCTION #2: INTERLEAVED ADDRESSING NON-
DIVERGENT
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<snip> 
 // do reduction in shared mem 
 for ( unsigned int s = 1; s < blockDim.x; s *= 2 ) { 
  if ( tid % ( 2 * s ) == 0 ) { 
   sPartials[tid] += sPartials[tid + s]; 
  } 
  __syncthreads(); 
 } 
<snip>

Every second thread 
Every fourth thread 

…

Every thread, if index 
within bounds 

(consecutive tid’s)



REDUCTION #2: INTERLEAVED ADDRESSING NON-
DIVERGENT
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Simple renaming of 
threads 

Which elements 
belong to one bank? 

Remember these are 
SP-floats, i.e. 4B 



REDUCTION #2: INTERLEAVED ADDRESSING NON-
DIVERGENT

New problem: shared memory bank 
conflicts 

Shared memory is best accessed using tid
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Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

int index = 2 * s * tid; 
if ( index < blockDim.x ) { 
 sPartials[index] += sPartials[index + s]; 
}



<snip> 
 // do reduction in shared mem  
 for ( unsigned int o = blockDim.x / 2; o > 0; o >>= 1 ) { 
  if ( tid < o ) { 
   sPartials[tid] += sPartials[tid + o]; 
  } 
  __syncthreads(); 
 } 
<snip>

REDUCTION #3: SEQUENTIAL ADDRESSING NON-
DIVERGENT

Replace strided 
indexing with thread-ID 
based indexing 

=> Block access instead 
of stride index 

Start with half the 
threads being active 
(blockDim.x/2) = 
offset 

Addition of elements 
tid and tid+s 
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<snip> 
 // do reduction in shared mem 
 for ( unsigned int s = 1; s < blockDim.x; s *= 2 ) { 
  int index = 2 * s * tid; 
  if ( index < blockDim.x ) { 
   sPartials[index] += sPartials[index + s]; 
  } 
  __syncthreads(); 
 } 
<snip>



REDUCTION #3: SEQUENTIAL ADDRESSING NON-
DIVERGENT

Block-wise access to 
shared memory 
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REDUCTION #3: SEQUENTIAL ADDRESSING NON-
DIVERGENT

New problem: idle threads 
During the first operation, half of the threads 
are idling! 

o starts with blockDim.x/2
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Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

if ( tid < o ) { 
 sPartials[tid] += sPartials[tid + o]; 
} 
__syncthreads();



... 
 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; 
 // perform first level of reduction 
    // read from global memory, write to local memory 
 sPartials[tid] = in[i] + in[i+blockDim.x]; 
 __syncthreads(); 
   
 for ( unsigned int o = blockDim.x / 2; o > 0; o >>= 1 ) { 
  if ( tid < o ) { 
   sPartials[tid] += sPartials[tid + o]; 
  } 
  __syncthreads(); 
 } 
...

REDUCTION #4: FIRST ADD DURING LOAD 
Modified kernel launch 
with only half the 
number of blocks 

Replace single load 
with 2 loads and first 
add
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    unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; 
 // each thread loads one element from global to shared mem 
 sPartials[tid] = in[i]; 
 __syncthreads(); 
... 
 for ( unsigned int o = blockDim.x / 2; o > 0; o >>= 1 ) { 
  if ( tid < o ) { 
   sPartials[tid] += sPartials[tid + o]; 
  } 
...



REDUCTION #4: FIRST ADD DURING LOAD 

Still far from peak 

Instruction overhead 
Instructions for control flow that are no loads, stores or core computations 

Address arithmetic, loop control
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Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

first add 21,68 37,15 58,03 51,31 43,75 33,66 128 58,03



REDUCTION #5: UNROLLING THE LAST WARP 

Number of active threads decreases over time 

Remember that a warp consists of 32 threads 
Implementation-dependent 

Instructions are synchronous within a warp 

Scheduler broadcasts instructions, threads can nullify the output 

i.e., for s <= 32 only one warp left 
=> No need for __syncthreads() 

=> No need for if (tid < s) 

Loop unrolling the last 6 iterations of the inner loop
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__global__ void Reduction0e_kernel( int *out, int *in, bool echo ) 
{ 
    extern __shared__ int sPartials[]; 
    const int tid = threadIdx.x; 
 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x; 
 // perform first level of reduction 
    // read from global memory, write to local memory 
 sPartials[tid] = in[i] + in[i+blockDim.x]; 
 __syncthreads(); 
  
 for ( unsigned int s = blockDim.x / 2; s > 32; s >>= 1 ) { 
  if ( tid < s ) { 
   sPartials[tid] += sPartials[tid + s]; 
  } 
  __syncthreads(); 
 }  
  
 if ( tid < 32 && blockDim.x >= 64) sPartials[tid] += sPartials[tid + 32];  
 if ( tid < 16 && blockDim.x >= 32) sPartials[tid] += sPartials[tid + 16];  
 if ( tid <  8 && blockDim.x >= 16) sPartials[tid] += sPartials[tid + 8];   
 if ( tid <  4 && blockDim.x >=  8) sPartials[tid] += sPartials[tid + 4];   
 if ( tid <  2 && blockDim.x >=  4) sPartials[tid] += sPartials[tid + 2];   
 if ( tid <  1 && blockDim.x >=  2) sPartials[tid] += sPartials[tid + 1];   

    if ( tid == 0 ) { 
        out[blockIdx.x] = sPartials[0];     
 } 
}

REDUCTION #5: UNROLLING THE LAST WARP 

Without 
unrolling, all 
warps execute 
every instruction
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REDUCTION #5: UNROLLING THE LAST WARP 

Complete unrolling? 

We need to know the number of iterations 
at compile time 

Limit of 1024 threads per block 

Power-of-two block sizes 

Easy unroll for a fixed block size 
How to stay generic though? 

-> C++ Templates! 
Template parameters will be evaluated at 
compile time 

Larger code
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Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

first add 21,68 37,15 58,03 51,31 43,75 33,66 128 58,03

unrolling 22,59 36,91 68,38 62,35 53,06 43,78 128 68,38



REDUCTION #6: COMPLETE UNROLLING 
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Template 
parameters are 
evaluated at 
compile time 

=> Inner loop 
highly optimized

template <unsigned int blockSize> __global__ void Reduction0f_kernel( int *out,  
                                                                int *in, bool echo ) 
{ 
    extern __shared__ int sPartials[]; 
    const int tid = threadIdx.x; 
  
 unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x; 
 // perform first level of reduction 
    // read from global memory, write to local memory 
 sPartials[tid] = in[i] + in[i+blockSize]; 
 __syncthreads(); 
  
 if (blockSize >= 1024) { 
  if (tid < 512) { sPartials[tid] += sPartials[tid + 512]; } __syncthreads(); 
     } 
 if (blockSize >= 512) { 
  if (tid < 256) { sPartials[tid] += sPartials[tid + 256]; } __syncthreads(); 
     } 
 if (blockSize >= 256) { 
  if (tid < 128) { sPartials[tid] += sPartials[tid + 128]; } __syncthreads(); 
     } 
 if (blockSize >= 128) 
  if (tid < 64) { sPartials[tid] += sPartials[tid + 64]; } __syncthreads(); 
     } 
  
 if ( tid < 32 && blockSize >= 64) sPartials[tid] += sPartials[tid + 32];  
 if ( tid < 16 && blockSize >= 32) sPartials[tid] += sPartials[tid + 16];  
 if ( tid <  8 && blockSize >= 16) sPartials[tid] += sPartials[tid + 8];   
 if ( tid <  4 && blockSize >=  8) sPartials[tid] += sPartials[tid + 4];   
 if ( tid <  2 && blockSize >=  4) sPartials[tid] += sPartials[tid + 2];   
 if ( tid <  1 && blockSize >=  2) sPartials[tid] += sPartials[tid + 1];   
 if ( tid == 0 ) { 
      out[blockIdx.x] = sPartials[0];     
 } 
}



void Reduction0f_wrapper ( int dimGrid, int dimBlock, int smemSize, int *out, int *in, bool echo ) 
{ 
 switch ( dimBlock ) { 
  case 1024: 
   Reduction0f_kernel<1024><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break; 
  case 512: 
   Reduction0f_kernel< 512><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break; 
  case 256: 
   Reduction0f_kernel< 256><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break; 
        ... <snip> ... 
  case 4: 
   Reduction0f_kernel<   4><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break; 
  case 2: 
   Reduction0f_kernel<   2><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break; 
  case 1: 
   Reduction0f_kernel<   1><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break; 
 } 
}

REDUCTION #6: COMPLETE UNROLLING 
Avoiding block size at compile time completely by using a switch 
statement 

Here: block size has to be a power of two 

=> only 10 possible block sizes
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REDUCTION #5: UNROLLING THE LAST WARP 

Less performance :/ 
Code size increase? 

Next optimization could look at optimizing the amount of ILP 
I.e. multiple adds per thread 

Not shown here anymore
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Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

first add 21,68 37,15 58,03 51,31 43,75 33,66 128 58,03

unrolling 22,59 36,91 68,38 62,35 53,06 43,78 128 68,38

templated 26,47 41,19 42,98 40,01 34,1 29,78 128 42,98



TYPES OF OPTIMIZATION 
Algorithmic optimizations 

Changes to addressing 
See examples 

Algorithm cascading 
Not shown here 

In essence, combine sequential and 
parallel reduction by having a 
thread sum multiple elements 

=> Increasing ILP 

Code optimizations 

Loop unrolling within thread 
warps 

See examples 

Templating 
Note that templating had little 
success, likely because of the non-
optimal number of iterations (resp. 
the second iteration should use a 
different block size)
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VOLTA’S INDEPENDENT THREAD 
SCHEDULING



PASCAL’S (AND BEFORE) SIMT MODEL

Single program counter per warp, 
combined with an “active mask”, 
and single call stack 

Resource efficient 

Performance penalty for divergent 
control flow -> branch serialization 

Deadlock possibility  
When sharing data among non-coherent 
threads of a single warp  

-> Avoid fine-grain synchronization or 
use lock-free algorithms
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if (threadIdx.x < 4) { 
    A; 
    B; 
} else { 
    X; 
    Y; 
}

di
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VOLTA’S (AND AFTER) SIMT MODEL
Independent Thread Scheduling (ITS) 

Maintains execution state per thread 
Yielding any thread is now possible 

Schedule optimizer: “determines how to group active 
threads from the same warp together into SIMT units” 

Execution is still SIMT 
“... threads can now diverge and reconverge at sub-
warp granularity, and Volta will still group together 
threads which are executing the same code and run 
them in parallel.” 

Z in the example is not reconverged 
Conservative: if statements A,B,X,Y all contain no 
synchronization operation, it is safe to reconverge on Z 

Warp synchronization __syncwarp() to force 
reconvergence
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if (threadIdx.x < 4) { 
    A; 
    B; 
} else { 
    X; 
    Y; 
}

https://developer.nvidia.com/blog/inside-volta 

di
ve

rg
e

A B

X Y

Z

Z

https://developer.nvidia.com/blog/inside-volta


STARVATION-FREE ALGORITHMS

ITS supports starvation-free algorithms 
Aka finite bypass: any process (or concurrent part) of an algorithm is bypassed at 
most a finite number times before being allowed access to the shared resource 

Guaranteed to execute correctly so long as the system ensures that all threads 
have eventually (fair) access to a contended resource 

Consider a lock (mutual exclusion) 
Thread #0 holds the lock, but thread #1 is scheduled for execution and impedes 
the progress of thread #0 

Volta’s ITS: thread #0 will eventually (question of when, not if) be scheduled for 
execution

33Michel Raynal: Concurrent Programming: Algorithms, Principles, and Foundations, Springer, 2013



WARP-LEVEL INSTRUCTIONS
A shuffle instruction (SHFL) enables a thread to 
directly read a register from another thread of the 
same warp 

Since Kepler 

Four shuffle intrinsics: __shfl(), __shfl_down(), 
__shfl_up(), __shfl_xor() 

int __shfl_down(int var, unsigned int delta, 
int width=warpSize); 

A shuffle instruction replaces a multi-instruction 
shared memory sequence 

Increase effective bandwidth (+ reduce latency) 

Reduce shared memory usage 

Pre-Volta: no need for synchronization as execution is 
warp-synchronous
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0: int i = threadIdx.x % 32; 
1: int j = __shfl_down(i, 2, 8);

tid: 0 1 2 3 4 5 6 7
0: 0 1 2 3 4 5 6 7

1: 2 3 4 5 6 7 6 7

https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/ 

https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/


ESCAPE THE NEW FEATURE
Use warp-level primitives in their sync-variant  

E.g., void __syncwarp(unsigned mask=FULL_MASK) 

Or implement a warp-level reduction tree using __shfl_down_sync()  

Use the new concept of cooperative thread groups 
https://developer.nvidia.com/blog/cooperative-groups/  

Compile for Pascal architecture 
nvcc with options -arch=compute_60 -code=sm_70 

Exercise 
First part: focus on compilation-based escape 

Second part: use either cooperative thread groups or warp-level primitives, 
compare to performance of first part
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https://developer.nvidia.com/blog/cooperative-groups/


WRAPPING UP



SUMMARY
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CUDA performance issues

Memory coalescing

Latency hiding Divergent branching Bank conflicts

Instruction overhead

Optimizing code 
1.Choose right performance goal (GFLOP/s or GB/s) 

2.Identify type of bottleneck: memory, computations, instruction overhead 

3.Optimize the algorithm 

4.Unroll loops 

5.Templating for optimal code

Good optimizations know when to stop 
=> Maintain readability, maintainability, portability


