
GPU COMPUTING
LECTURE 07 - SCHEDULING

OPTIMIZATIONS
Kazem Shekofteh

Kazem.shekofteh@ziti.uni-heidelberg.de
Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg
Inspired from lectures by Holger Fröning

Based on “Optimizing Parallel Reduction in CUDA” by Mark Harris

REMINDER: SCHEDULING
Thread hierarchy: threads are organized in
blocks, each thread block (Cooperative Thread
Array, CTA1) can be mapped to one SM

Parallel slackness leveraged to hide latencies
In essence, memory access latencies

Start many more threads/CTAs than resources
available

Thread block
No dependencies/guarantees for different CTAs

Up to 4 CTAs can be scheduled to one SM (for Kepler,
implementation dependent)

Threads within a block
Warp of 32 threads as scheduling unit (for Kepler,
implementation dependent)

Implementation-dependent optimizations =>
compatibility and code maintenance issues

2

Thread
block

Grid 0

Grid 1

shared memory

global memory

Threadlocal memory

Thread
warp

void

time

1 PTX term

REMINDER: SCHEDULING

How are CTAs executed?
Abstraction that is defined by user

Independent of the actual architecture

=> CTAs are opaque to the user

How are thread warps executed?
Abstraction that is defined by JIT compiler

Architecture-dependent

=> Warps are transparent to the user

Both are scheduling entities

3

1 16
Threads in a CTA:

Actually look like this:

warp 0 warp 1 warp 2 warp 3

And are executed like this:

warp 0
warp 1
warp 2
warp 3

ti
m

e

SYNC

OPTIMIZATIONS

4

CUDA performance issues

Memory coalescing

Latency hiding Divergent branching Bank conflicts

Instruction overhead

Optimizations

Algorithmic optimizations
Kernel launch optimizations Code optimizations

Scheduling optimizations

REDUCTION EXAMPLE

PARALLEL REDUCTION

Common and important data parallel
primitive

Global sum, histogram, etc.

Often associative operations -> reordering
opportunity :)

Pretty easy to implement in CUDA
Way harder to get it right (fast)

Optimization example for scheduling
issues

6 different versions here (could be more)

6

s =
NX

i=0

f(xi)

p =
NY

i=0

f(xi)

hk =
NX

i=0

(xi == k)?1 : 0

Tree-based reduction within each CTA

=> Multiple CTAs required
To process very large arrays

For high utilization of the GPU (one CTA
per SM)

How to communicate/synchronize
partial results between CTAs?

Kernel completion boundaries to the
rescue!

I.e., kernel re-launch

CTA 2

CTA 1CTA 0

PARALLEL REDUCTION ON A GPU

7

13

4 2

6

1 6

7

EXCURSION: GLOBAL SYNCHRONIZATION
Global synchronization would solve this problem and many others
easily

But there is no global synchronization! Why?

Global operations expensive under scalability constraints
High SM count

Impact on scheduling guarantees (progress)
Scheduling is non-preemptive

Can’t synchronize more CTAs than can execute concurrently

Would limit block count to: #CTAs <= #SMs * resident_blocks_per_SM

“Persistent threads”

Conflictive with required parallel slackness to hide memory latency

8

KERNEL DECOMPOSITION
Solution: decompose into multiple kernels

Kernel completion boundary serves as global synchronization point

Negligible HW overhead, low SW overhead

For reductions, code for all levels is the same
Associativity: a + (b + c) = (a + b) + c

9

SIX REDUCTION OPTIMIZATIONS

METHODOLOGY
4M elements

Vary thread count (per CTA) for performance analysis

Note that we keep thread count constant for all iterations
Other solutions differ regarding this

Subject to next optimization (exercise)

11

__global__ void Reduction0a_kernel(int *out, int *in, size_t N)
{
 extern __shared__ int sPartials[];
 const int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 // each thread loads one element from global to shared mem
 sPartials[tid] = in[i];
 __syncthreads();

 // do reduction in shared mem
 for (unsigned int s = 1; s < blockDim.x; s *= 2) {
 if (tid % (2 * s) == 0) {
 sPartials[tid] += sPartials[tid + s];
 }
 __syncthreads();
 }

 if (tid == 0) {
 out[blockIdx.x] = sPartials[0];
 }
}

blockDim.x must be a
power-of-two

1. Collective load
Coalescing issues?

2. Utilization
Every n-th thread
computes, stride increases
with loop iteration

3. Synchronization
Why syncthreads?

REDUCTION #1: INTERLEAVED ADDRESSING

12

Possible coalescing issue?

REDUCTION #1: INTERLEAVED ADDRESSING

Two loads per thread,
but sequentially

13

REDUCTION #1: INTERLEAVED ADDRESSING

Problem: branch divergence

14

Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

 // do reduction in shared mem
 for (unsigned int s = 1; s < blockDim.x; s *= 2) {
 if (tid % (2 * s) == 0) {
 sPartials[tid] += sPartials[tid + s];
 }
 __syncthreads();
 }

<snip>
 // do reduction in shared mem
 for (unsigned int s = 1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;
 if (index < blockDim.x) {
 sPartials[index] += sPartials[index + s];
 }
 __syncthreads();
 }
<snip>

Solution: re-sort add ops

Modified if-clause

REDUCTION #2: INTERLEAVED ADDRESSING NON-
DIVERGENT

15

<snip>
 // do reduction in shared mem
 for (unsigned int s = 1; s < blockDim.x; s *= 2) {
 if (tid % (2 * s) == 0) {
 sPartials[tid] += sPartials[tid + s];
 }
 __syncthreads();
 }
<snip>

Every second thread
Every fourth thread

…

Every thread, if index
within bounds

(consecutive tid’s)

REDUCTION #2: INTERLEAVED ADDRESSING NON-
DIVERGENT

16

Simple renaming of
threads

Which elements
belong to one bank?

Remember these are
SP-floats, i.e. 4B

REDUCTION #2: INTERLEAVED ADDRESSING NON-
DIVERGENT

New problem: shared memory bank
conflicts

Shared memory is best accessed using tid

17

Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

int index = 2 * s * tid;
if (index < blockDim.x) {
 sPartials[index] += sPartials[index + s];
}

<snip>
 // do reduction in shared mem
 for (unsigned int o = blockDim.x / 2; o > 0; o >>= 1) {
 if (tid < o) {
 sPartials[tid] += sPartials[tid + o];
 }
 __syncthreads();
 }
<snip>

REDUCTION #3: SEQUENTIAL ADDRESSING NON-
DIVERGENT

Replace strided
indexing with thread-ID
based indexing

=> Block access instead
of stride index

Start with half the
threads being active
(blockDim.x/2) =
offset

Addition of elements
tid and tid+s

18

<snip>
 // do reduction in shared mem
 for (unsigned int s = 1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;
 if (index < blockDim.x) {
 sPartials[index] += sPartials[index + s];
 }
 __syncthreads();
 }
<snip>

REDUCTION #3: SEQUENTIAL ADDRESSING NON-
DIVERGENT

Block-wise access to
shared memory

19

REDUCTION #3: SEQUENTIAL ADDRESSING NON-
DIVERGENT

New problem: idle threads
During the first operation, half of the threads
are idling!

o starts with blockDim.x/2

20

Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

if (tid < o) {
 sPartials[tid] += sPartials[tid + o];
}
__syncthreads();

...
 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
 // perform first level of reduction
 // read from global memory, write to local memory
 sPartials[tid] = in[i] + in[i+blockDim.x];
 __syncthreads();

 for (unsigned int o = blockDim.x / 2; o > 0; o >>= 1) {
 if (tid < o) {
 sPartials[tid] += sPartials[tid + o];
 }
 __syncthreads();
 }
...

REDUCTION #4: FIRST ADD DURING LOAD
Modified kernel launch
with only half the
number of blocks

Replace single load
with 2 loads and first
add

21

 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
 // each thread loads one element from global to shared mem
 sPartials[tid] = in[i];
 __syncthreads();
...
 for (unsigned int o = blockDim.x / 2; o > 0; o >>= 1) {
 if (tid < o) {
 sPartials[tid] += sPartials[tid + o];
 }
...

REDUCTION #4: FIRST ADD DURING LOAD

Still far from peak

Instruction overhead
Instructions for control flow that are no loads, stores or core computations

Address arithmetic, loop control

22

Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

first add 21,68 37,15 58,03 51,31 43,75 33,66 128 58,03

REDUCTION #5: UNROLLING THE LAST WARP

Number of active threads decreases over time

Remember that a warp consists of 32 threads
Implementation-dependent

Instructions are synchronous within a warp

Scheduler broadcasts instructions, threads can nullify the output

i.e., for s <= 32 only one warp left
=> No need for __syncthreads()

=> No need for if (tid < s)

Loop unrolling the last 6 iterations of the inner loop

23

__global__ void Reduction0e_kernel(int *out, int *in, bool echo)
{
 extern __shared__ int sPartials[];
 const int tid = threadIdx.x;
 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
 // perform first level of reduction
 // read from global memory, write to local memory
 sPartials[tid] = in[i] + in[i+blockDim.x];
 __syncthreads();

 for (unsigned int s = blockDim.x / 2; s > 32; s >>= 1) {
 if (tid < s) {
 sPartials[tid] += sPartials[tid + s];
 }
 __syncthreads();
 }

 if (tid < 32 && blockDim.x >= 64) sPartials[tid] += sPartials[tid + 32];
 if (tid < 16 && blockDim.x >= 32) sPartials[tid] += sPartials[tid + 16];
 if (tid < 8 && blockDim.x >= 16) sPartials[tid] += sPartials[tid + 8];
 if (tid < 4 && blockDim.x >= 8) sPartials[tid] += sPartials[tid + 4];
 if (tid < 2 && blockDim.x >= 4) sPartials[tid] += sPartials[tid + 2];
 if (tid < 1 && blockDim.x >= 2) sPartials[tid] += sPartials[tid + 1];

 if (tid == 0) {
 out[blockIdx.x] = sPartials[0];
 }
}

REDUCTION #5: UNROLLING THE LAST WARP

Without
unrolling, all
warps execute
every instruction

24

REDUCTION #5: UNROLLING THE LAST WARP

Complete unrolling?

We need to know the number of iterations
at compile time

Limit of 1024 threads per block

Power-of-two block sizes

Easy unroll for a fixed block size
How to stay generic though?

-> C++ Templates!
Template parameters will be evaluated at
compile time

Larger code

25

Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

first add 21,68 37,15 58,03 51,31 43,75 33,66 128 58,03

unrolling 22,59 36,91 68,38 62,35 53,06 43,78 128 68,38

REDUCTION #6: COMPLETE UNROLLING

26

Template
parameters are
evaluated at
compile time

=> Inner loop
highly optimized

template <unsigned int blockSize> __global__ void Reduction0f_kernel(int *out,
 int *in, bool echo)
{
 extern __shared__ int sPartials[];
 const int tid = threadIdx.x;

 unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
 // perform first level of reduction
 // read from global memory, write to local memory
 sPartials[tid] = in[i] + in[i+blockSize];
 __syncthreads();

 if (blockSize >= 1024) {
 if (tid < 512) { sPartials[tid] += sPartials[tid + 512]; } __syncthreads();
 }
 if (blockSize >= 512) {
 if (tid < 256) { sPartials[tid] += sPartials[tid + 256]; } __syncthreads();
 }
 if (blockSize >= 256) {
 if (tid < 128) { sPartials[tid] += sPartials[tid + 128]; } __syncthreads();
 }
 if (blockSize >= 128)
 if (tid < 64) { sPartials[tid] += sPartials[tid + 64]; } __syncthreads();
 }

 if (tid < 32 && blockSize >= 64) sPartials[tid] += sPartials[tid + 32];
 if (tid < 16 && blockSize >= 32) sPartials[tid] += sPartials[tid + 16];
 if (tid < 8 && blockSize >= 16) sPartials[tid] += sPartials[tid + 8];
 if (tid < 4 && blockSize >= 8) sPartials[tid] += sPartials[tid + 4];
 if (tid < 2 && blockSize >= 4) sPartials[tid] += sPartials[tid + 2];
 if (tid < 1 && blockSize >= 2) sPartials[tid] += sPartials[tid + 1];
 if (tid == 0) {
 out[blockIdx.x] = sPartials[0];
 }
}

void Reduction0f_wrapper (int dimGrid, int dimBlock, int smemSize, int *out, int *in, bool echo)
{
 switch (dimBlock) {
 case 1024:
 Reduction0f_kernel<1024><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break;
 case 512:
 Reduction0f_kernel< 512><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break;
 case 256:
 Reduction0f_kernel< 256><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break;
 ... <snip> ...
 case 4:
 Reduction0f_kernel< 4><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break;
 case 2:
 Reduction0f_kernel< 2><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break;
 case 1:
 Reduction0f_kernel< 1><<< dimGrid, dimBlock, smemSize >>>(out, in, echo); break;
 }
}

REDUCTION #6: COMPLETE UNROLLING
Avoiding block size at compile time completely by using a switch
statement

Here: block size has to be a power of two

=> only 10 possible block sizes

27

REDUCTION #5: UNROLLING THE LAST WARP

Less performance :/
Code size increase?

Next optimization could look at optimizing the amount of ILP
I.e. multiple adds per thread

Not shown here anymore

28

Throughput [GB/s] 32 64 128 256 512 1024 maxThr maxBW

intrlvd div 7,39 12,57 16,77 14,67 12,33 9,05 128 16,77

intrlvd non-div 10,46 18,33 23,88 18,96 14,5 10,02 128 23,88

seq. non-div 11,05 19,54 30,83 27,51 23,67 17,99 128 30,83

first add 21,68 37,15 58,03 51,31 43,75 33,66 128 58,03

unrolling 22,59 36,91 68,38 62,35 53,06 43,78 128 68,38

templated 26,47 41,19 42,98 40,01 34,1 29,78 128 42,98

TYPES OF OPTIMIZATION
Algorithmic optimizations

Changes to addressing
See examples

Algorithm cascading
Not shown here

In essence, combine sequential and
parallel reduction by having a
thread sum multiple elements

=> Increasing ILP

Code optimizations

Loop unrolling within thread
warps

See examples

Templating
Note that templating had little
success, likely because of the non-
optimal number of iterations (resp.
the second iteration should use a
different block size)

29

VOLTA’S INDEPENDENT THREAD
SCHEDULING

PASCAL’S (AND BEFORE) SIMT MODEL

Single program counter per warp,
combined with an “active mask”,
and single call stack

Resource efficient

Performance penalty for divergent
control flow -> branch serialization

Deadlock possibility
When sharing data among non-coherent
threads of a single warp

-> Avoid fine-grain synchronization or
use lock-free algorithms

31

if (threadIdx.x < 4) {
 A;
 B;
} else {
 X;
 Y;
}

di
ve

rg
e

re
co

nv
er

ge

A B

X Y

Z

VOLTA’S (AND AFTER) SIMT MODEL
Independent Thread Scheduling (ITS)

Maintains execution state per thread
Yielding any thread is now possible

Schedule optimizer: “determines how to group active
threads from the same warp together into SIMT units”

Execution is still SIMT
“... threads can now diverge and reconverge at sub-
warp granularity, and Volta will still group together
threads which are executing the same code and run
them in parallel.”

Z in the example is not reconverged
Conservative: if statements A,B,X,Y all contain no
synchronization operation, it is safe to reconverge on Z

Warp synchronization __syncwarp() to force
reconvergence

32

if (threadIdx.x < 4) {
 A;
 B;
} else {
 X;
 Y;
}

https://developer.nvidia.com/blog/inside-volta

di
ve

rg
e

A B

X Y

Z

Z

https://developer.nvidia.com/blog/inside-volta

STARVATION-FREE ALGORITHMS

ITS supports starvation-free algorithms
Aka finite bypass: any process (or concurrent part) of an algorithm is bypassed at
most a finite number times before being allowed access to the shared resource

Guaranteed to execute correctly so long as the system ensures that all threads
have eventually (fair) access to a contended resource

Consider a lock (mutual exclusion)
Thread #0 holds the lock, but thread #1 is scheduled for execution and impedes
the progress of thread #0

Volta’s ITS: thread #0 will eventually (question of when, not if) be scheduled for
execution

33Michel Raynal: Concurrent Programming: Algorithms, Principles, and Foundations, Springer, 2013

WARP-LEVEL INSTRUCTIONS
A shuffle instruction (SHFL) enables a thread to
directly read a register from another thread of the
same warp

Since Kepler

Four shuffle intrinsics: __shfl(), __shfl_down(),
__shfl_up(), __shfl_xor()

int __shfl_down(int var, unsigned int delta,
int width=warpSize);

A shuffle instruction replaces a multi-instruction
shared memory sequence

Increase effective bandwidth (+ reduce latency)

Reduce shared memory usage

Pre-Volta: no need for synchronization as execution is
warp-synchronous

34

0: int i = threadIdx.x % 32;
1: int j = __shfl_down(i, 2, 8);

tid: 0 1 2 3 4 5 6 7
0: 0 1 2 3 4 5 6 7

1: 2 3 4 5 6 7 6 7

https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/

https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/

ESCAPE THE NEW FEATURE
Use warp-level primitives in their sync-variant

E.g., void __syncwarp(unsigned mask=FULL_MASK)

Or implement a warp-level reduction tree using __shfl_down_sync()

Use the new concept of cooperative thread groups
https://developer.nvidia.com/blog/cooperative-groups/

Compile for Pascal architecture
nvcc with options -arch=compute_60 -code=sm_70

Exercise
First part: focus on compilation-based escape

Second part: use either cooperative thread groups or warp-level primitives,
compare to performance of first part

35

https://developer.nvidia.com/blog/cooperative-groups/

WRAPPING UP

SUMMARY

37

CUDA performance issues

Memory coalescing

Latency hiding Divergent branching Bank conflicts

Instruction overhead

Optimizing code
1.Choose right performance goal (GFLOP/s or GB/s)

2.Identify type of bottleneck: memory, computations, instruction overhead

3.Optimize the algorithm

4.Unroll loops

5.Templating for optimal code

Good optimizations know when to stop
=> Maintain readability, maintainability, portability

