
GPU COMPUTING
LECTURE 09 - HOST-DEVICE

OPTIMIZATIONS
Kazem Shekofteh

kazem.shekofteh@ziti.uni-heidelberg.de
Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg
Inspired from lectures by Holger Fröning

Mismatch on-device vs. off-device
bandwidth

GPU memory is a scarce resources
Big Data/Deep Learning push the
requirements dramatically

GPUs typically excel when
performing computations in-core

Data movement is orchestrated
manually

See last slides though

2

CPU
SOCKETCPU
CORES

NORTH
BRIDGE

HOST
MEMOR

IO
BRIDGE

GPU
CORES

GPU
MEMOR

system request
queue

system interface

peripheral
interface

memory
interface

memory
interface

16GB/

16GB/

1,165 GFLOPS

288GB/S

60GB/S

96 GFLOPS
GPUS AS PERIPHERAL DEVICES

Objective: overlap communication
and computation

Overcome PCIe bottleneck

Up to now: kernels to exploit data
parallelism, host code still
sequential

Now: exploit task parallelism on
the host side

GPUs are accelerators, thus CPU
overhead should be as small as
possible

3

CPU
SOCKETCPU
CORES

NORTH
BRIDGE

HOST
MEMOR

IO
BRIDGE

GPU
CORES

GPU
MEMOR

system request
queue

system interface

peripheral
interface

memory
interface

memory
interface

16GB/

16GB/

1,165 GFLOPS

288GB/S

60GB/S

96 GFLOPS
STREAMS FOR TASK PARALLELISM

CUDA STREAMS

EXTENDED CONCURRENCY

GPUs are well-known to exploit fine-grained
concurrency

Data-level parallelism

(-> Instruction-level parallelism/Thread-level parallelism)

Streams extend this to coarse-grained concurrency
CPU/GPU concurrency

Concurrent copy & execute (memcpy & kernel execute)

Kernel concurrency (CC 2.x and later can run multiple
kernels in parallel)

Multi-GPU concurrency (multiple GPUs in one host can
operate in parallel)

5

Overlapping threads
& instructions

Overlapping kernels
& memcpys

CUDA STREAMS: HOST-DEVICE SYNCHRONIZATION

Context-based
Block until all outstanding CUDA operations have completed

cudaMemcpy(), cudaDeviceSynchronize(), …

Stream-based
Block until / test if all outstanding CUDA operations in a stream have completed

cudaStreamSynchronize (stream)

cudaStreamQuery (stream) -> cudaSuccess or cudaErrorNotReady

Event-based
Record an event in a stream; when event is dequeued it is time-stamped

cudaEventRecord (event, stream)

Block until / test if event has been dequeued (recorded)

cudaEventSynchronize (event) or cudaEventQuery (event)

6

SERIALIZED DATA TRANSFER AND KERNEL
EXECUTION

Data movements and kernel executions are serialized by the way we
currently use cudaMemcpy

Remember Amdahl‘s law (serial and parallel fraction)

Example of a SAXPY operation

7

<latexit sha1_base64="bgTb2YOquFrXpstqC0sMMrsDi04=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0UUhJJIUTdCwY3gpoJ9QBvKZDJph04ezNxIS+gnuPFX3LhQxK1Ld/6NkzYLbT0wcDjnXO7c48aCK7Csb6OwtLyyulZcL21sbm3vmLt7TRUlkrIGjUQk2y5RTPCQNYCDYO1YMhK4grXc4XXmtx6YVDwK72EcMycg/ZD7nBLQUs88Hne4g69wF9hIj6dExAMywV3qRYBHmXeKs0jPLFsVawq8SOyclFGOes/86noRTQIWAhVEqY5txeCkRAKngk1K3USxmNAh6bOOpiEJmHLS6UETfKQVD/uR1C8EPFV/T6QkUGocuDoZEBioeS8T//M6CfiXTsrDOAEW0tkiPxEYIpy1gz0uGQUx1oRQyfVfMR0QSSjoDku6BHv+5EXSPKvY55XqXbVcu83rKKIDdIhOkI0uUA3doDpqIIoe0TN6RW/Gk/FivBsfs2jByGf20R8Ynz9q7pw6</latexit>

y[i] = alpha · x[i] + y[i]

DEFAULT STREAM & DEVICE OVERLAP

Naming no stream means all
memcpys/kernel launches
operate on the default stream

=> Inherent synchronization

8

int dev_count;
cudaDeviceProp prop;

cudaGetDeviceCount(&dev_count);
for(int i=0; i < dev_count; i++){
 cudaGetDeviceProperties(&prop, i);

 if (prop.deviceOverlap) ...

Most recent CUDA devices
support Device Overlap

Called “Concurrent copy and
execute” in DeviceQuery

Simultaneously execute a kernel
and a H2D/D2H copy

cudaMemcpy (dx, hx, numBytes,
 cudaMemcpyHostToDevice);
saxpy <<<numBlocks,blockSize>>> (dx, ..);
cudaMemcpy (hx, dx, numBytes,
 cudaMemcpyDeviceToHost);

PIPELINING DATA TRANSFERS WITH KERNEL
EXECUTION

Divide large data structures into segments

Identify independent segments

Overlap data transfer with kernel execution

Issues
Kernel launch overhead

Computational intensity

9

Pipeline phases
Fill

Steady state
Drain

CONCEPT OF CUDA STREAMS

CUDA streams allow for simultaneous copy and
execute

Asynchronous cudaMemcpyAsync only

A CUDA stream is an ordered queue of operations
Kernel launches, cudaMemcpyAsync, synchronizations

Ordering within a queue is maintained
-> resolving dependencies

Independent operations should go into different streams

API calls are asynchronous

Return after queued, but not necessarily completed

10

MULTIPLE CUDA STREAMS
Use different streams to allow for overlap regarding copy
and execute -> multiple queues

Host needs to query and synchronize on operations in the
queue -> events

If CUDA events pop out of the queue, previous operations have
completed (FIFO)

Extend kernel launch call by stream ID
kernel_function <<< dim3 grid_dim,
 dim3 block_dim,
 size_t shmem_size,
 cudaStream_t stream >>>

cudaMemcpyAsync(void* dst, const void* src,
 size_t count, cudaMemcpyKind kind,
 cudaStream_t stream = 0)

11

MULTIPLE CUDA STREAMS – CONCEPTUAL VIEW

12

MULTI-STREAM HOST CODE – VERSION 1

13

cudaStream_t stream0, stream1;
cudaStreamCreate (&stream0);
cudaStreamCreate (&stream1);
float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

<snip> // cudaMallocs go here

for (int i = 0; i < n; i += segSize * 2) {
 // stream 0
 cudaMemCpyAsync (d_A0, h_A + i, segSize*sizeof(float),.. , stream0);
 cudaMemCpyAsync (d_B0, h_B + i, segSize*sizeof(float),.. , stream0);
 saxpy <<< segSize/256, 256, 0, stream0 >>> (d_A0, d_B0, ...);
 cudaMemCpyAsync (d_C0, h_C + i, segSize*sizeof(float),... , stream0);

 // stream 1
 cudaMemCpyAsync (d_A1, h_A + i + segSize, segSize*sizeof(float), ..., stream1);
 cudaMemCpyAsync (d_B1, h_B + i + segSize, segSize*sizeof(float), ..., stream1);
 saxpy <<< segSize/256, 256, 0, stream1 >>> (d_A1, d_B1, ...);
 cudaMemCpyAsync (d_C1, h_C + i + segSize, segSize*sizeof(float), ..., stream1);
}

Loop variable increases by
segSize * no_of_streams

Loop unrolling, however
here into different queues

ISSUES USING STREAMS

MULTI-STREAM HOST CODE – VERSION 1

Goal: overlap A[1] & B[1] with
Compute C[0]

Data structure in device driver to
maintain dependencies

Single device-level queues for copy
and execute, respectively

(Fermi or older)

That’s not what we want
Copy C[0] blocks A[1] and B[1] in the
copy engine queue

15

MULTI-STREAM HOST CODE – VERSION 2

16

MULTI-STREAM HOST CODE – VERSION 2

17

cudaStream_t stream0, stream1;
cudaStreamCreate (&stream0);
cudaStreamCreate (&stream1);
float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

<snip> // cudaMallocs go here

for (int i = 0; i < n; i += segSize * 2) {
 cudaMemCpyAsync (d_A0, h_A + i, segSize*sizeof(float),.. , stream0);
 cudaMemCpyAsync (d_B0, h_B + i, segSize*sizeof(float),.. , stream0);
 cudaMemCpyAsync (d_A1, h_A + i + segSize, segSize*sizeof(float), ..., stream1);
 cudaMemCpyAsync (d_B1, h_B + i + segSize, segSize*sizeof(float), ..., stream1);

 saxpy <<< segSize/256, 256, 0, stream0 >>> (d_A0, d_B0, ...);
 saxpy <<< segSize/256, 256, 0, stream1 >>> (d_A1, d_B1, ...);

 cudaMemCpyAsync (d_C0, h_C + i, segSize*sizeof(float),... , stream0);
 cudaMemCpyAsync (d_C1, h_C + i + segSize, segSize*sizeof(float), ..., stream1);
}

By re-ordering enqueue
operations, we don’t get

blocked -> task parallelism

MULTI-STREAM HOST CODE – VERSION 2

18

CUDA STREAMS: FERMI VS. KEPLER (OR NEWER)
Fermi: one queue for each
engine (copy and execute)

Careful unrolling required

See example

-> Single work queue

Kepler: multiple queues for
each engine (copy and execute,
32 queues each)

“Hyper-Queuing”

Prioritized scheduling between
ready streams

Explicit re-ordering unnecessary

19

Fermi Kepler

GRID MANAGEMENT

20

Fermi

Kepler

CUDA STREAMS: FALLACIES
Some operations implicitly synchronize all other CUDA operations

Page locked memory allocation
cudaMallocHost() or cudaHostAlloc()

Device memory allocation
cudaMalloc()

Non-Async versions of memory operations
cudaMemcpy*() (no Async suffix)

cudaMemset*() (no Async suffix)

Change to L1/shared memory configuration
cudaDeviceSetCacheConfig()

21

REMINDER: LATENCY TOLERANCE TECHNIQUES

22

Property Relaxed Consistency Models Prefetching Multi-Threading Block Data
Transfer

Types of
latency

tolerated

Write (blocking read processors)
Read and write (dynamically

scheduled processors)
Write
Read

Write
Read

Synchronization

Write
Read

Software
requirements

Labeling synchronization
operations Predictability Explicit extra

concurrency

Identifying and
orchestrating

block transfers

Extra
hardware
support

Little Little Substantial
Not in processor,
but in memory

system

Supported in
commercial

systems?
Yes Yes Yes (Yes)

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach,
Morgan Kaufmann,1998

streaming

APPLICABILITY OF STREAMING
Technique to hide PCIe latency

Assume segment size = N floats

23

Tcompute ≥ TPCI

TPCI =
4 × N

B
, Tcompute =

r × 4 × N
C

B : Bandwidth(GB/s)

C : PeakPerformance(GFlops/s)

Machine behaviour

r × 4 × N
C

≥
4 × N

B
⇒ r ≥

C
B

ComputationalIntensity : r =
Flops
Byte

Program behaviour

VIRTUAL SHARED MEMORY

VIRTUAL SHARED MEMORY CONCEPT

25

Address space 0 Address space 1

0xb62ae…

UVA/UVM
Unified Virtual Addressing (UVA)

Single virtual address space for all memory
in the system

GPU code can access all memory

Manual locality optimizations (cudaMemcpy)

Unified Memory (UM)
Pool of managed memory that is shared
between CPU and GPU

Single pointer sufficient

Automatic (page) migration between CPU &
GPU domains (Pascal/Volta)

26

float *X, ...; // unified pointers
cudaMallocManaged (X, N * sizeof (float));

...
saxpy <<<numBlocks,blockSize>>> (X, ...);
...

cudaDeviceSynchronize ();
use_data (X);
cudaFree (X);

cudaDeviceCanAccessPeer(&result, gpuid_0,
 gpuid_1);
cudaSetDevice (gpuid_0);
cudaDeviceEnablePeerAccess (gpuid_1, 0);
cudaSetDevice (gpuid_1);
cudaDeviceEnablePeerAccess (gpuid_0, 0);
cudaMemcpy (gpu0_buf, gpu1_buf, buf_size,
 cudaMemcpyDefault);

// or: operate directly on remote memory
gpu0_buf[idx] = gpu1_buf[idx];

PASCAL - UNIFIED MEMORY

27

0	

2	

4	

6	

8	

10	

12	

malloc	 pinned	 UM	 UM	prefetch	

!m
e	
[u
s]
	

Matrix	Mul!ply	1k	x	1k	

host2device	 kernel	 device2host	

0	

50	

100	

150	

200	

250	

300	

malloc	 pinned	 UM	 UM	prefetch	

!m
e	
[u
s]
	

Matrix	Mul!ply	4k	x	4k	

host2device	 kernel	 device2host	

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

1,800	

malloc	 pinned	 UM	 UM	
prefetch	

!m
e	
[u
s]
	

Matrix	Mul!ply	8k	x	8k	

host2device	 kernel	 device2host	

WRAPPING UP

SUMMARY
More parallelism: streams

New: task-level parallelism

+ Hide data movement costs (PCIe)

- More work for the programmer

Careful work dispatch required
for older GPUs

Overlap for latency hiding
requires certain computational
intensity

Alternative #1: Unified virtual
addressing (UVA)

Threads can access CPU or other
GPUs’ memory

Access costs can be huge

Alternative #2: Unified memory
(UM)

Automated data movement based
on page migration

Certainly some overhead, but
overall concept promising

29

