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Mismatch on-device vs. off-device 
bandwidth 

GPU memory is a scarce resources 
Big Data/Deep Learning push the 
requirements dramatically 

GPUs typically excel when 
performing computations in-core 

Data movement is orchestrated 
manually 

See last slides though
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Objective: overlap communication 
and computation 

Overcome PCIe bottleneck 

Up to now: kernels to exploit data 
parallelism, host code still 
sequential 

Now: exploit task parallelism on 
the host side 

GPUs are accelerators, thus CPU 
overhead should be as small as 
possible
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CUDA STREAMS



EXTENDED CONCURRENCY

GPUs are well-known to exploit fine-grained 
concurrency 

Data-level parallelism  

(-> Instruction-level parallelism/Thread-level parallelism) 

Streams extend this to coarse-grained concurrency 
CPU/GPU concurrency 

Concurrent copy & execute (memcpy & kernel execute) 

Kernel concurrency (CC 2.x and later can run multiple 
kernels in parallel) 

Multi-GPU concurrency (multiple GPUs in one host can 
operate in parallel)
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Overlapping threads 
& instructions

Overlapping kernels 
& memcpys



CUDA STREAMS: HOST-DEVICE SYNCHRONIZATION

Context-based 
Block until all outstanding CUDA operations have completed 

cudaMemcpy(), cudaDeviceSynchronize(), … 

Stream-based 
Block until / test if all outstanding CUDA operations in a stream have completed 

cudaStreamSynchronize (stream) 

cudaStreamQuery (stream) -> cudaSuccess or cudaErrorNotReady 

Event-based 
Record an event in a stream; when event is dequeued it is time-stamped 

cudaEventRecord (event, stream) 

Block until / test if event has been dequeued (recorded) 

cudaEventSynchronize (event) or cudaEventQuery (event)
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SERIALIZED DATA TRANSFER AND KERNEL 
EXECUTION

Data movements and kernel executions are serialized by the way we 
currently use cudaMemcpy 

Remember Amdahl‘s law (serial and parallel fraction) 

Example of a SAXPY operation
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<latexit sha1_base64="bgTb2YOquFrXpstqC0sMMrsDi04=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0UUhJJIUTdCwY3gpoJ9QBvKZDJph04ezNxIS+gnuPFX3LhQxK1Ld/6NkzYLbT0wcDjnXO7c48aCK7Csb6OwtLyyulZcL21sbm3vmLt7TRUlkrIGjUQk2y5RTPCQNYCDYO1YMhK4grXc4XXmtx6YVDwK72EcMycg/ZD7nBLQUs88Hne4g69wF9hIj6dExAMywV3qRYBHmXeKs0jPLFsVawq8SOyclFGOes/86noRTQIWAhVEqY5txeCkRAKngk1K3USxmNAh6bOOpiEJmHLS6UETfKQVD/uR1C8EPFV/T6QkUGocuDoZEBioeS8T//M6CfiXTsrDOAEW0tkiPxEYIpy1gz0uGQUx1oRQyfVfMR0QSSjoDku6BHv+5EXSPKvY55XqXbVcu83rKKIDdIhOkI0uUA3doDpqIIoe0TN6RW/Gk/FivBsfs2jByGf20R8Ynz9q7pw6</latexit>

y[i] = alpha · x[i] + y[i]



DEFAULT STREAM & DEVICE OVERLAP 

Naming no stream means all 
memcpys/kernel launches 
operate on the default stream 

=> Inherent synchronization
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int dev_count; 
cudaDeviceProp prop; 

cudaGetDeviceCount(&dev_count); 
for(int i=0; i < dev_count; i++){ 
    cudaGetDeviceProperties(&prop, i); 

    if (prop.deviceOverlap) ... 

Most recent CUDA devices 
support Device Overlap 

Called “Concurrent copy and 
execute” in DeviceQuery 

Simultaneously execute a kernel 
and a H2D/D2H copy

cudaMemcpy ( dx, hx, numBytes, 
             cudaMemcpyHostToDevice); 
saxpy <<<numBlocks,blockSize>>> (dx, ..); 
cudaMemcpy ( hx, dx, numBytes, 
             cudaMemcpyDeviceToHost);



PIPELINING DATA TRANSFERS WITH KERNEL 
EXECUTION

Divide large data structures into segments 

Identify independent segments 

Overlap data transfer with kernel execution 

Issues 
Kernel launch overhead 

Computational intensity
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Pipeline phases 
Fill 

Steady state 
Drain



CONCEPT OF CUDA STREAMS

CUDA streams allow for simultaneous copy and 
execute 

Asynchronous cudaMemcpyAsync only 

A CUDA stream is an ordered queue of operations 
Kernel launches, cudaMemcpyAsync, synchronizations 

Ordering within a queue is maintained  
-> resolving dependencies 

Independent operations should go into different streams 

API calls are asynchronous  

Return after queued, but not necessarily completed
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MULTIPLE CUDA STREAMS 
Use different streams to allow for overlap regarding copy 
and execute -> multiple queues 

Host needs to query and synchronize on operations in the 
queue -> events 

If CUDA events pop out of the queue, previous operations have 
completed (FIFO) 

Extend kernel launch call by stream ID 
kernel_function <<< dim3 grid_dim, 
                    dim3 block_dim,  
                    size_t shmem_size, 
                    cudaStream_t stream >>> 

cudaMemcpyAsync(void* dst, const void* src,  
                size_t count, cudaMemcpyKind kind, 
                cudaStream_t stream = 0)
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MULTIPLE CUDA STREAMS – CONCEPTUAL VIEW 
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MULTI-STREAM HOST CODE – VERSION 1
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cudaStream_t stream0, stream1; 
cudaStreamCreate ( &stream0 ); 
cudaStreamCreate ( &stream1 ); 
float *d_A0, *d_B0, *d_C0;  // device memory for stream 0 
float *d_A1, *d_B1, *d_C1;  // device memory for stream 1 

<snip> // cudaMallocs go here 

for ( int i = 0; i < n; i += segSize * 2 ) { 
  // stream 0 
  cudaMemCpyAsync ( d_A0, h_A + i, segSize*sizeof(float),.. , stream0 ); 
  cudaMemCpyAsync ( d_B0, h_B + i, segSize*sizeof(float),.. , stream0 ); 
  saxpy <<< segSize/256, 256, 0, stream0 >>> ( d_A0, d_B0, ... ); 
  cudaMemCpyAsync ( d_C0, h_C + i, segSize*sizeof(float),... , stream0 ); 

  // stream 1 
  cudaMemCpyAsync ( d_A1, h_A + i + segSize, segSize*sizeof(float), ..., stream1 ); 
  cudaMemCpyAsync ( d_B1, h_B + i + segSize, segSize*sizeof(float), ..., stream1 ); 
  saxpy <<< segSize/256, 256, 0, stream1 >>> ( d_A1, d_B1, ... ); 
  cudaMemCpyAsync ( d_C1, h_C + i + segSize, segSize*sizeof(float), ..., stream1 ); 
}

Loop variable increases by 
segSize * no_of_streams

Loop unrolling, however 
here into different queues



ISSUES USING STREAMS



MULTI-STREAM HOST CODE – VERSION 1

Goal: overlap A[1] & B[1] with 
Compute C[0] 

Data structure in device driver to 
maintain dependencies 

Single device-level queues for copy 
and execute, respectively 

(Fermi or older) 

That’s not what we want 
Copy C[0] blocks A[1] and B[1] in the 
copy engine queue
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MULTI-STREAM HOST CODE – VERSION 2
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MULTI-STREAM HOST CODE – VERSION 2

17

cudaStream_t stream0, stream1; 
cudaStreamCreate ( &stream0 ); 
cudaStreamCreate ( &stream1 ); 
float *d_A0, *d_B0, *d_C0;  // device memory for stream 0 
float *d_A1, *d_B1, *d_C1;  // device memory for stream 1 

<snip> // cudaMallocs go here 

for ( int i = 0; i < n; i += segSize * 2 ) { 
  cudaMemCpyAsync ( d_A0, h_A + i, segSize*sizeof(float),.. , stream0 ); 
  cudaMemCpyAsync ( d_B0, h_B + i, segSize*sizeof(float),.. , stream0 ); 
  cudaMemCpyAsync ( d_A1, h_A + i + segSize, segSize*sizeof(float), ..., stream1 ); 
  cudaMemCpyAsync ( d_B1, h_B + i + segSize, segSize*sizeof(float), ..., stream1 ); 

  saxpy <<< segSize/256, 256, 0, stream0 >>> ( d_A0, d_B0, ... ); 
  saxpy <<< segSize/256, 256, 0, stream1 >>> ( d_A1, d_B1, ... ); 

  cudaMemCpyAsync ( d_C0, h_C + i, segSize*sizeof(float),... , stream0 ); 
  cudaMemCpyAsync ( d_C1, h_C + i + segSize, segSize*sizeof(float), ..., stream1 ); 
}

By re-ordering enqueue 
operations, we don’t get 

blocked -> task parallelism



MULTI-STREAM HOST CODE – VERSION 2
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CUDA STREAMS: FERMI VS. KEPLER (OR NEWER)
Fermi: one queue for each 
engine (copy and execute) 

Careful unrolling required 

See example 

-> Single work queue 

Kepler: multiple queues for 
each engine (copy and execute, 
32 queues each) 

“Hyper-Queuing” 

Prioritized scheduling between 
ready streams 

Explicit re-ordering unnecessary
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Fermi Kepler



GRID MANAGEMENT
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Fermi

Kepler



CUDA STREAMS: FALLACIES
Some operations implicitly synchronize all other CUDA operations 

Page locked memory allocation 
cudaMallocHost() or cudaHostAlloc() 

Device memory allocation 
cudaMalloc() 

Non-Async versions of memory operations 
cudaMemcpy*() (no Async suffix)  

cudaMemset*() (no Async suffix) 

Change to L1/shared memory configuration 
cudaDeviceSetCacheConfig()
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REMINDER: LATENCY TOLERANCE TECHNIQUES
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Property Relaxed Consistency Models Prefetching Multi-Threading Block Data 
Transfer

Types of 
latency 

tolerated

Write (blocking read processors) 
Read and write (dynamically 

scheduled processors) 
Write 
Read

Write 
Read 

Synchronization

Write 
Read

Software 
requirements

Labeling synchronization 
operations Predictability Explicit extra 

concurrency

Identifying and 
orchestrating 

block transfers

Extra 
hardware 
support

Little Little Substantial
Not in processor, 
but in memory 

system

Supported in 
commercial 

systems?
Yes Yes Yes (Yes)

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach, 
Morgan Kaufmann,1998

streaming



APPLICABILITY OF STREAMING
Technique to hide PCIe latency 

Assume segment size = N floats
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Tcompute ≥ TPCI

TPCI =
4 × N

B
, Tcompute =

r × 4 × N
C

B : Bandwidth(GB/s)

C : PeakPerformance(GFlops/s)

Machine behaviour

r × 4 × N
C

≥
4 × N

B
⇒ r ≥

C
B

ComputationalIntensity : r =
Flops
Byte

Program behaviour



VIRTUAL SHARED MEMORY



VIRTUAL SHARED MEMORY CONCEPT
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Address space 0 Address space 1

0xb62ae…



UVA/UVM
Unified Virtual Addressing (UVA) 

Single virtual address space for all memory 
in the system 

GPU code can access all memory 

Manual locality optimizations (cudaMemcpy) 

Unified Memory (UM) 
Pool of managed memory that is shared 
between CPU and GPU 

Single pointer sufficient 

Automatic (page) migration between CPU & 
GPU domains (Pascal/Volta)
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float *X, ...;  // unified pointers 
cudaMallocManaged (X, N * sizeof (float)); 

... 
saxpy <<<numBlocks,blockSize>>> (X, ...); 
... 

cudaDeviceSynchronize (); 
use_data ( X ); 
cudaFree ( X ); 

cudaDeviceCanAccessPeer(&result, gpuid_0,  
                                 gpuid_1);  
cudaSetDevice (gpuid_0); 
cudaDeviceEnablePeerAccess (gpuid_1, 0); 
cudaSetDevice (gpuid_1); 
cudaDeviceEnablePeerAccess (gpuid_0, 0); 
cudaMemcpy ( gpu0_buf, gpu1_buf, buf_size,  
             cudaMemcpyDefault); 

// or: operate directly on remote memory 
gpu0_buf[idx] = gpu1_buf[idx];



PASCAL - UNIFIED MEMORY
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WRAPPING UP



SUMMARY
More parallelism: streams 

New: task-level parallelism 

+ Hide data movement costs (PCIe) 

- More work for the programmer 

Careful work dispatch required 
for older GPUs 

Overlap for latency hiding 
requires certain computational 
intensity 

Alternative #1: Unified virtual 
addressing (UVA) 

Threads can access CPU or other 
GPUs’ memory 

Access costs can be huge 

Alternative #2: Unified memory 
(UM) 

Automated data movement based 
on page migration 

Certainly some overhead, but 
overall concept promising
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