
GPU COMPUTING
LECTURE 12 - GPU PROGRAMMING

MODELS
Kazem Shekofteh

kazem.shekofteh@ziti.uni-heidelberg.de
Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg
Inspired from lectures by Holger Fröning

ANNOUNCEMENT OF THE EXAM

Date: Tue, February 28, 2023

Time: 10:00

Location: INF 252 gHS, SR A + SR B

2

PROGRAMMING A GPU FOR GENERAL-PURPOSE
COMPUTATIONS

Up to now: CUDA
Vendor-specific (NVIDIA), pros and cons

First programming model for GPU computing (2006)

Alternatives?

Similar approach: OpenCL (1)
Since 2008

Imperative language

Directive-based programming: OpenACC (2)
Since 2012, to be integrated in OpenMP

Declarative language

In general: domain-specific languages (DSL) vs. general-purpose languages

3

CUDA REVIEW
Up to now we’ve learned most
aspects of CUDA

Bottom-up approach for this course

Main documentation is the CUDA
Programming Guide

Also bottom-up

CUDA: various methods to control
execution

Plenty of opportunities, plenty of
responsibilities

OpenCL: similar, but not vendor-
specific

Documentation: top-down

4

CUDA OpenCL

OPENCL
(AND A NICE CUDA REVIEW)

OVERVIEW
Low-level, high-performance, portable abstraction

API

Cross-platform programming language

OpenCL architecture
Platform model (see below)

Execution model (1)

Memory model (2)

Programming model (3)

Platform model
An abstraction how OpenCL sees the HW

Host and device kernel code

Converged and diverged control flow

6

Platform model
Khronos OpenCL Working Group, „The OpenCL

Specification“, Version: 2.0, Document Revision: 19

EXECUTION MODEL - OVERVIEW
Host code (sequential parts, control)

Kernels -> device (computational intensive part)

Context
Devices, kernel objects (OpenCL functions), program
objects, memory objects

Each device has a (host) command queue
Kernel-enqueue commands

Memory commands

Synchronization commands

Additionally: device command queues

Event objects, in-order and out-of-order
execution, multiple command queues per
context

7

Khronos OpenCL Working Group, „The OpenCL
Specification“, Version: 2.0, Document Revision: 19

EXECUTION MODEL - NDRANGE

Work item: kernel function in execution (kernel instance) for a single
point in the defined index space

Global ID based on its coordinates in the index space

Or: work group ID + local ID

Work group: organization structure of work items with a given kernel
instance (coarse grained decomposition of the index space)

NDRange: N-dimensional index space supported by OpenCL
Decomposed into work groups

Defined by size of each dimension, offset indices (F) per dimension, work group
size for each dimension, global ID: N-dimensional tuple ([F;F+size-1])

8

EXECUTION MODEL - NDRANGE

9

Each work-item is identified by
global ID (gx, gy)

or by the combination of
work group ID (wx, wy), size of

each work group (Sx,Sy) and local
ID (sx, sy)

Khronos OpenCL Working Group, „The OpenCL
Specification“, Version: 2.0, Document Revision: 19

EXECUTION MODEL – EXECUTION OF KERNEL
INSTANCES

Kernel-enqueue command: host program enqueues kernel object
with NDRange and work group decomposition to command queue

Command queue: determines when to submit kernel instance to
device? (in-order queues, OOO queues)

Launching kernel instance: associated work groups are placed in
the work pool (ready-to-execute work groups)

Kernel enqueue command completes when all work groups have ended,
updates to memory are globally visible, and device signals successful
completion

No constraints on scheduling as long as all work groups will eventually
execute

Multiple command queues: feeding into a single work pool

Device-side enqueue using nested parallelism (OOO)

10

Kernel-enqueue
command

Command queue

Execution on
device

Completion

EXECUTION MODEL - SYNCHRONIZATION
Synchronization between work groups not possible

Work groups may be serialized or not, no guarantees for parallel execution

No guarantees for independent progress

Synchronization between work items of a single work group only using high-
level constructs as barriers

Again: no guarantees for independent progress. Thus any kind of active-wait
synchronization (spin locks) is not portable

-> No forward progress or ordering relations between work groups

Work-group synchronization: constraints on the order of execution for work
items in a single work group

Work group function (collective)

Barrier, reduction, broadcast, prefix sum, predicate evaluation

11

EXECUTION MODEL: KERNEL CATEGORIES

OpenCL kernels: kernel-objects associated with kernel functions
within program-objects (user kernels)

Native kernels: execution along with OpenCL kernels on a device and
shared memory objects

Functions created outside of OpenCL, accessed within OpenCL through a function
pointer

Built-in kernels: specific to a particular device, not built at run time
(fixed-function hardware)

All use the command queue model and synchronization semantics

12

MEMORY MODEL - OVERVIEW

Memory regions: distinct memories visible to both host and device
that share a context

Memory objects: objects defined by the OpenCL API and their
management by the host and devices

Shared Virtual Memory (SVM): a virtual address space exposed to
host and devices within a single context

Consistency model: constraints/guarantees on visibility of updates
and reads, including atomic operations and memory fences

“Consistency model defines constraints on the order in which memory operations
must appear to be performed (become visible)”

13

MEMORY MODEL – NAMED ADDRESS SPACES

Global memory:
addresses not preserved
between kernel
instances or host/device

SVM: alternative that
logically extends global
memory to include host
memory

Optional: caches

14Khronos OpenCL Working Group, „The OpenCL
Specification“, Version: 2.0, Document Revision: 19

MEMORY MODEL – MEMORY OBJECTS
Buffer: a block of contiguous memory used as general purpose object

Usually manipulation using pointers

Image: a buffer that holds one- to three-dimensional images as an
opaque data structure managed by special functions

RW access not supported

OpenCL 2.0: read and write supported with special synchronization and fence
operations

Pipe: an ordered sequence of data items with two endpoints (read and
write)

In particular supporting producer/consumer patterns

Allocated by host functions, modifications either using pointers or
managed by the OpenCL runtime.

15

MEMORY MODEL - MEMORY CONSISTENCY MODEL
Memory consistency model: guarantees for programmers and restrictions for compiler
writers

OpenCL consistency model is based on ISO C11

Release consistency (RC): “The system is said to provide RC, if all write operations by
a certain node are seen by the other nodes after the former releases the object and
before the latter acquire it.“

Instead of globally updating memory, RC considers locks on areas of memory, and propagates only
the locked memory as needed

Definition:
1.Before a non-sync access is performed, all previous acquires by the process must have completed

2.Before a release is performed, all previous reads/writes must have completed

3.Acquire/release is sequentially consistent (RCsc)

Eager: actions guaranteed to happen for releases

Lazy: actions guaranteed to happen for subsequent acquires

16

MEMORY MODEL - MEMORY CONSISTENCY MODEL

User can control memory relaxation: at least for synchronization
operations like atomics, fences; user can also control scope

17

store load

memory_order_relaxed implies no ordering
constraints - -

memory_order_acquire acquire semantics - acquire

memory_order_release release semantics release -

memory_order_acq_rel both acquire and
release semantics release acquire

memory_order_seq_cst implies sequential
consistency release acquire

MEMORY MODEL - MEMORY CONSISTENCY MODEL

Good news: most programmers won’t see these details

Instead, the following guidelines are sufficient (functionality &
performance)

1.Only use synchronization points within command queues to ensure safe sharing
of global memory objects

2.Only use work group functions (like barriers) to synchronize within work groups

3.Restrict use of consistency parameters to memory_order_seq_cst with
memory_scope_device/memory_scope_all_svm_devices

4.Ensure that program is race-free

18

OPENCL VS. CUDA IN A NUTSHELL

BASICS COMPARED

20Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

SYSTEM ARCHITECTURE

21Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

EXECUTION MODEL TERMINOLOGIES

22Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

MEMORY MODEL TERMINOLOGIES

23Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

OPENCL EXAMPLES

OPENCL EXAMPLE CODE

25

int main (int argc , const char * argv [])
{
 // Select platform
 cl_uint num_platforms ; cl_platform_id platform ;
 cl_int err = clGetPlatformIDs (1, &platform , &num_platforms);

 // Select device
 cl_device_id device ;
 clGetDeviceIDs (platform, CL_DEVICE_TYPE_GPU, 1, &device , 0);

 // Create context & command queue
 cl_context context = clCreateContext (0, 1, &device , 0, 0, &err);
 cl_command_queue cmd_queue = clCreateCommandQueue (context, device , 0, 0);

 // Prepare kernel
 cl_program program = clCreateProgramWithSource (context, 1, &kernel_src, 0, &err);
 clBuildProgram (program, 0, 0, 0, 0, 0);
 cl_kernel kernel = clCreateKernel (program, "example", &err);
...

OPENCL EXAMPLE CODE

26

...
// Create buffers
cl_mem Ad = clCreateBuffer (context, CL_MEM_READ_ONLY, sizeA, 0, 0);

// Reserve memory
clSetKernelArg (kernel, 0, sizeof (cl_mem), &d_A);

// Configure work group
size_t ws_global [] = { 512, 512 };
size_t ws_local [] = { 16, 16 }; // 256 items per group

// Copy input data, execute kernel, copy output data back
clEnqueueWriteBuffer (cmd_queue, d_A, CL_FALSE, 0, sizeA, h_A, 0, 0, 0);
clEnqueueNDRangeKernel (cmd_queue, kernel, 2, 0, ws_global, ws_local, 0, 0, 0);
clEnqueueReadBuffer (cmd_queue, d_A, CL_FALSE, 0, sizeA, h_A, 0, 0, 0);
clFinish (cmd_queue);
}

OPENCL EXAMPLE CODE

27

const char kernel_src [] =
 " __kernel void example (__global const float *A, ..., int wA, int wB)"
 "{ "
 "int i = get_global_id (0); "
 "int j = get_global_id (1); "
 " "
 "... "
 “... "
 “}; "

PERFORMANCE COMPARISON: OPENCL VS. CUDA
Performance Ratio (PR) >
1: OpenCL is faster

MD, SPMV: rely on texture
memory

Remove -> similar
performance results

Sobel: GTX280 had no L1
cache

FDTD: loop unrolling,
CUDA unrolls more

Remove -> similar
performance results

FFT: see next slide

28Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A Comprehensive Performance Comparison of
CUDA and OpenCL. In Proceedings of the 2011 International Conference on Parallel Processing (ICPP '11).

PERFORMANCE COMPARISON: FFT KERNEL

29Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A Comprehensive Performance Comparison of
CUDA and OpenCL. In Proceedings of the 2011 International Conference on Parallel Processing (ICPP '11).

OpenCL performs much worse than
CUDA, code relies on loop unrolling

1. almost the
same

2. slightly more
for OpenCL

3. identical

4. much more
for CUDA

5. much less for
CUDA

WRAPPING UP

SUMMARY
A wealth of features comes with a
wealth of complexity

Geared to a variety of devices, from
embedded mobile to supercomputers

Comprehensive execution model

Many similarities to CUDA
Vendor-specific: faster updates, but
limited usage

OpenCL: generic language
NVIDIA, AMD GPUs, CELL, Intel MIC,
CPUs, FPGAs, …

31

CUDA OpenCL
Global Memory Global Memory

Constant Memory Constant Memory
Shared Memory Local Memory
Local Memory Private Memory

Thread Work Item
Thread Block Work Group

Programming
model

Execution model

Run-time system

Architecture

