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PROGRAMMING A GPU FOR GENERAL-PURPOSE 
COMPUTATIONS

Up to now: CUDA 
Vendor-specific (NVIDIA), pros and cons 

First programming model for GPU computing (2006) 

Alternatives? 

Similar approach: OpenCL (1) 
Since 2008 

Imperative language 

Directive-based programming: OpenACC (2) 
Since 2012, to be integrated in OpenMP 

Declarative language 

In general: domain-specific languages (DSL) vs. general-purpose languages
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CUDA REVIEW
Up to now we’ve learned most 
aspects of CUDA 

Bottom-up approach for this course 

Main documentation is the CUDA 
Programming Guide 

Also bottom-up 

CUDA: various methods to control 
execution 

Plenty of opportunities, plenty of 
responsibilities 

OpenCL: similar, but not vendor-
specific 

Documentation: top-down
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CUDA OpenCL



OPENCL 
(AND A NICE CUDA REVIEW)



OVERVIEW
Low-level, high-performance, portable abstraction 

API 

Cross-platform programming language 

OpenCL architecture 
Platform model (see below) 

Execution model (1) 

Memory model (2) 

Programming model (3) 

Platform model 
An abstraction how OpenCL sees the HW 

Host and device kernel code 

Converged and diverged control flow

6

Platform model
Khronos OpenCL Working Group, „The OpenCL 

Specification“, Version: 2.0, Document Revision: 19



EXECUTION MODEL - OVERVIEW 
Host code (sequential parts, control) 

Kernels -> device (computational intensive part) 

Context 
Devices, kernel objects (OpenCL functions), program 
objects, memory objects 

Each device has a (host) command queue 
Kernel-enqueue commands 

Memory commands 

Synchronization commands 

Additionally: device command queues 

Event objects, in-order and out-of-order 
execution, multiple command queues per 
context
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Khronos OpenCL Working Group, „The OpenCL 
Specification“, Version: 2.0, Document Revision: 19



EXECUTION MODEL - NDRANGE

Work item: kernel function in execution (kernel instance) for a single 
point in the defined index space 

Global ID based on its coordinates in the index space 

Or: work group ID + local ID 

Work group: organization structure of work items with a given kernel 
instance (coarse grained decomposition of the index space) 

NDRange: N-dimensional index space supported by OpenCL 
Decomposed into work groups 

Defined by size of each dimension, offset indices (F) per dimension, work group 
size for each dimension, global ID: N-dimensional tuple ([F;F+size-1])
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EXECUTION MODEL - NDRANGE
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Each work-item is identified by 
global ID (gx, gy)  

or by the combination of  
work group ID (wx, wy), size of 

each work group (Sx,Sy) and local 
ID (sx, sy)

Khronos OpenCL Working Group, „The OpenCL 
Specification“, Version: 2.0, Document Revision: 19



EXECUTION MODEL – EXECUTION OF KERNEL 
INSTANCES 

Kernel-enqueue command: host program enqueues kernel object 
with NDRange and work group decomposition to command queue 

Command queue: determines when to submit kernel instance to 
device? (in-order queues, OOO queues) 

Launching kernel instance: associated work groups are placed in 
the work pool (ready-to-execute work groups) 

Kernel enqueue command completes when all work groups have ended, 
updates to memory are globally visible, and device signals successful 
completion 

No constraints on scheduling as long as all work groups will eventually 
execute 

Multiple command queues: feeding into a single work pool 

Device-side enqueue using nested parallelism (OOO)
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Kernel-enqueue 
command

Command queue

Execution on 
device

Completion



EXECUTION MODEL - SYNCHRONIZATION
Synchronization between work groups not possible 

Work groups may be serialized or not, no guarantees for parallel execution 

No guarantees for independent progress 

Synchronization between work items of a single work group only using high-
level constructs as barriers 

Again: no guarantees for independent progress. Thus any kind of active-wait 
synchronization (spin locks) is not portable 

-> No forward progress or ordering relations between work groups 

Work-group synchronization: constraints on the order of execution for work 
items in a single work group 

Work group function (collective) 

Barrier, reduction, broadcast, prefix sum, predicate evaluation

11



EXECUTION MODEL: KERNEL CATEGORIES

OpenCL kernels: kernel-objects associated with kernel functions 
within program-objects (user kernels) 

Native kernels: execution along with OpenCL kernels on a device and 
shared memory objects 

Functions created outside of OpenCL, accessed within OpenCL through a function 
pointer 

Built-in kernels: specific to a particular device, not built at run time 
(fixed-function hardware) 

All use the command queue model and synchronization semantics
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MEMORY MODEL - OVERVIEW

Memory regions: distinct memories visible to both host and device 
that share a context 

Memory objects: objects defined by the OpenCL API and their 
management by the host and devices 

Shared Virtual Memory (SVM): a virtual address space exposed to 
host and devices within a single context 

Consistency model: constraints/guarantees on visibility of updates 
and reads, including atomic operations and memory fences 

“Consistency model defines constraints on the order in which memory operations 
must appear to be performed (become visible)”
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MEMORY MODEL – NAMED ADDRESS SPACES 

Global memory: 
addresses not preserved 
between kernel 
instances or host/device 

SVM: alternative that 
logically extends global 
memory to include host 
memory 

Optional: caches

14Khronos OpenCL Working Group, „The OpenCL 
Specification“, Version: 2.0, Document Revision: 19



MEMORY MODEL – MEMORY OBJECTS
Buffer: a block of contiguous memory used as general purpose object 

Usually manipulation using pointers 

Image: a buffer that holds one- to three-dimensional images as an 
opaque data structure managed by special functions 

RW access not supported 

OpenCL 2.0: read and write supported with special synchronization and fence 
operations 

Pipe: an ordered sequence of data items with two endpoints (read and 
write) 

In particular supporting producer/consumer patterns 

Allocated by host functions, modifications either using pointers or 
managed by the OpenCL runtime.
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MEMORY MODEL - MEMORY CONSISTENCY MODEL 
Memory consistency model: guarantees for programmers and restrictions for compiler 
writers 

OpenCL consistency model is based on ISO C11 

Release consistency (RC): “The system is said to provide RC, if all write operations by 
a certain node are seen by the other nodes after the former releases the object and 
before the latter acquire it.“ 

Instead of globally updating memory, RC considers locks on areas of memory, and propagates only 
the locked memory as needed 

Definition: 
1.Before a non-sync access is performed, all previous acquires by the process must have completed 

2.Before a release is performed, all previous reads/writes must have completed 

3.Acquire/release is sequentially consistent (RCsc) 

Eager: actions guaranteed to happen for releases 

Lazy: actions guaranteed to happen for subsequent acquires
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MEMORY MODEL - MEMORY CONSISTENCY MODEL 

User can control memory relaxation: at least for synchronization 
operations like atomics, fences; user can also control scope
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store load

memory_order_relaxed implies no ordering 
constraints - -

memory_order_acquire acquire semantics - acquire

memory_order_release release semantics release -

memory_order_acq_rel both acquire and 
release semantics release acquire

memory_order_seq_cst implies sequential 
consistency release acquire



MEMORY MODEL - MEMORY CONSISTENCY MODEL 

Good news: most programmers won’t see these details 

Instead, the following guidelines are sufficient (functionality & 
performance) 

1.Only use synchronization points within command queues to ensure safe sharing 
of global memory objects 

2.Only use work group functions (like barriers) to synchronize within work groups 

3.Restrict use of consistency parameters to memory_order_seq_cst with 
memory_scope_device/memory_scope_all_svm_devices 

4.Ensure that program is race-free
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OPENCL VS. CUDA IN A NUTSHELL



BASICS COMPARED

20Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf


SYSTEM ARCHITECTURE

21Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf


EXECUTION MODEL TERMINOLOGIES

22Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf


MEMORY MODEL TERMINOLOGIES

23Sami Rosendahl, CUDA and OpenCL API comparison, https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf

https://wiki.aalto.fi/download/attachments/40025977/Cuda+and+OpenCL+API+comparison_presented.pdf


OPENCL EXAMPLES



OPENCL EXAMPLE CODE
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int main (int argc , const char * argv []) 
{ 
  // Select platform 
  cl_uint num_platforms ; cl_platform_id platform ; 
  cl_int err = clGetPlatformIDs  ( 1, &platform , &num_platforms ); 

  // Select device 
  cl_device_id device ; 
  clGetDeviceIDs ( platform, CL_DEVICE_TYPE_GPU, 1, &device , 0 ); 

  // Create context & command queue 
  cl_context context = clCreateContext  ( 0, 1, &device , 0, 0, &err ); 
  cl_command_queue cmd_queue = clCreateCommandQueue ( context, device , 0, 0 ); 

  // Prepare kernel 
  cl_program program = clCreateProgramWithSource (context, 1, &kernel_src, 0, &err); 
  clBuildProgram ( program, 0, 0, 0, 0, 0 ); 
  cl_kernel kernel = clCreateKernel ( program, "example", &err ); 
...



OPENCL EXAMPLE CODE
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... 
// Create buffers 
cl_mem Ad = clCreateBuffer ( context, CL_MEM_READ_ONLY, sizeA, 0, 0 ); 

// Reserve memory 
clSetKernelArg ( kernel, 0, sizeof ( cl_mem ), &d_A ); 

// Configure work group 
size_t ws_global [] = { 512, 512 }; 
size_t ws_local [] =  {  16,  16 };  // 256 items per group 

// Copy input data, execute kernel, copy output data back 
clEnqueueWriteBuffer   ( cmd_queue, d_A, CL_FALSE, 0, sizeA, h_A, 0, 0, 0 ); 
clEnqueueNDRangeKernel ( cmd_queue, kernel, 2, 0, ws_global, ws_local, 0, 0, 0 );  
clEnqueueReadBuffer    ( cmd_queue, d_A, CL_FALSE, 0, sizeA, h_A, 0, 0, 0 ); 
clFinish ( cmd_queue ); 
}



OPENCL EXAMPLE CODE
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const char kernel_src [] = 
  " __kernel void example ( __global const float *A, ..., int wA, int wB )" 
  "{                                                                      " 
  "int i = get_global_id (0);                                             " 
  "int j = get_global_id (1);                                             " 
  "                                                                       " 
  "...                                                                    " 
  “...                                                                    " 
  “};                                                                     " 



PERFORMANCE COMPARISON: OPENCL VS. CUDA 
Performance Ratio (PR) > 
1: OpenCL is faster 

MD, SPMV: rely on texture 
memory 

Remove -> similar 
performance results 

Sobel: GTX280 had no L1 
cache 

FDTD: loop unrolling, 
CUDA unrolls more 

Remove -> similar 
performance results 

FFT: see next slide

28Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A Comprehensive Performance Comparison of 
CUDA and OpenCL. In Proceedings of the 2011 International Conference on Parallel Processing (ICPP '11). 



PERFORMANCE COMPARISON: FFT KERNEL 

29Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A Comprehensive Performance Comparison of 
CUDA and OpenCL. In Proceedings of the 2011 International Conference on Parallel Processing (ICPP '11). 

OpenCL performs much worse than 
CUDA, code relies on loop unrolling

1. almost the 
same

2. slightly more 
for OpenCL

3. identical

4. much more 
for CUDA

5. much less for 
CUDA



WRAPPING UP



SUMMARY
A wealth of features comes with a 
wealth of complexity 

Geared to a variety of devices, from 
embedded mobile to supercomputers 

Comprehensive execution model 

Many similarities to CUDA 
Vendor-specific: faster updates, but 
limited usage 

OpenCL: generic language 
NVIDIA, AMD GPUs, CELL, Intel MIC, 
CPUs, FPGAs, …
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CUDA OpenCL
Global Memory Global Memory

Constant Memory Constant Memory
Shared Memory Local Memory
Local Memory Private Memory

Thread Work Item
Thread Block Work Group

Programming 
model 

Execution model 

Run-time system 

Architecture


