
GPU COMPUTING

LECTURE 13 - CONSISTENCY &

COHERENCE
Kazem Shekofteh

kazem.shekofteh@ziti.uni-heidelberg.de

Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Fröning

REMINDER: OUR VIEW OF A GPU
Software view: a programmable many-core scalar architecture

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step

SIMT: single instruction, multiple threads

IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data

Illusion of scalar threads: hardware packs them into compound units

IT’S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

2

CONSISTENCY AND COHERENCE

3
https://www.flickr.com/photos/starwarsblog/632644970/

Consistency: factual

Coherence: consistency over time

https://www.flickr.com/photos/starwarsblog/632644970/

EXAMPLE #1 (EXPECTATIONS AND REALITY)
Assume a coherent shared memory system

Can both if clauses be evaluated as “true”?

Yes: Assume stores can pass other stores (write
buffering)

Other possible sources: out-of-order architecture,
compiler optimizations, memory system contention, …

4

Thread 0 on processor 0

a = 0;

...

a = 1;

if (b == 0)

{

 ...

}

Thread 1 on processor 1

b = 0;

...

b = 1;

if (a == 0)

{

 ...

}

M

P

read
write

buffer

EXAMPLE #2 (MORE FRUSTRATIONS)
Producer-Consumer scheme

Assume a coherent shared memory system

Variables are initialized to zero

Which values can be printed out?

For modern CPU architectures, both 0 and 1

5

Thread 0 on processor 0

a = 1;

flag = 1;

Thread 1 on processor 1

while (flag == 0);

print a;
 M1M0

P0 P1

a flag

http://www.linuxjournal.com

RELAXING CONSISTENCY

We relax consistency for a good reason: performance

Maintaining a strict and global ordering is incredibly
expensive and hinders optimizations, e.g.:

Store buffers

Out-of-order processor architectures

Multiple outstanding memory transactions

Sliced (banked) caches

As we will see, GPUs are a very radical example 
of such relaxations

6

SHARED MEMORY MULTIPROCESSORS

SHARED MEMORY
Similarities to executing multiple processes by time-
sharing on a single processor

Process: defined as a single (virtual) address space with
one or more threads of control

Multiple threads share one address space by definition

Portions of the address space can be shared, multiple virtual
addresses (VA) map to a single physical address (PA)

Communication and synchronization

Writes to a logically shared address by one thread are visible to
reads of the other threads

Rely on memory operations, including atomic operations

Virtual address space typically quite structured

Private and shared segments

8

T0
SHARED 

MEM T1
store

load

Perfectly timed load

SHARED MEMORY

9

Culler et al, Parallel Computer Architecture, MK 1999

An address space defines a range of discrete addresses; each address may correspond
to a different resource

SHARED MEMORY
Extending to a shared-memory multiprocessor by adding processors

Typical shared memory multiprocessor interconnection scheme

(Non-) Uniform Memory Access ((N)UMA)

Recent CPU architectures?

10
Culler et al, Parallel Computer Architecture, MK 1999

(a)Late FSB implementations – illusion of a bus network

(b)Opteron (HT), Intel Nehalem (QPI), Sandy Bridge etc.

(c)Early FSB implementations – true bus networks

FUNDAMENTAL DESIGN ISSUES OF A
COMMUNICATION ABSTRACTION

Communication abstraction

Contract, similar to ISA

1. Naming

What data can be named?

2. Operations

Operations on named data

3. Ordering

Ordering among operations

4. Communication/  
 Replication of data

5. Performance
11

Compilation or
library

OS support

Programming Model

(Multiprogramming, SM, MP, DP)

Application

Communication 
hardware

Physical communication medium

BYPASS
Communication abstraction

User/system boundary

FUNDAMENTAL DESIGN ISSUES: NAMING
Shared memory

Naming: Thread can name locations in the register and the virtual address space

Segments for code, stack, heap

Access to shared variables mapped to load/store instructions on virtual addresses

Global physical address space: shared virtual addresses map to the same physical
address

Independent local physical address spaces: page faults

Message passing

Message passing in hardware, but matching/buffering in software

Issue of naming arises at each abstraction level of a parallel
architecture

12

FUNDAMENTAL DESIGN ISSUES: OPERATIONS

Shared memory

Loads and stores on addresses and registers (CISC), only registers (RISC)

Reading/writing shared variables

Atomic read-modify-write operations on shared variables

Message passing

Sending/receiving on (private) local addresses and process identifiers

Collective operations

Note the complexity difference

13

FUNDAMENTAL DESIGN ISSUES: ORDERING
Shared memory

Threads operate independently, so which order to apply?

Among memory operations: sequential program order

Variables are read and modified: top-to-bottom, left-to-right order of the
program

Message passing

MPI guarantees strong ordering

Tag matching, matching results in linear search(es)

Receive any tag/sender will just return the first matched queue entry

Ordering has big performance impact

Relaxed ordering models

14

SHARED MEMORY MULTIPROCESSORS
Multiple execution contexts sharing a single address space

Multiple processes/threads, multiple data (MIMD)

Simplification: Single Program Multiple Data (SPMD)

Parallelism type: TLP, DLP

Advantages:

Applications: looks like multi-threaded uniprocessor

OS: only evolutionary extensions required

OS-bypass for communication

Software development: first correctness, then performance

Disadvantages:

Synchronization is very difficult

Implicit communication is harder to optimize

15

MEMORY

P P P P

Symmetric Multiprocessors (SMP) and Chip Multiprocessors (CMP) are the most
successful parallel machines ever

Theoretical foundation: 
Parallel Random Access Machine (PRAM)

COHERENCE AND CONSISTENCY BASICS

RECAP: THE COHERENCE PROBLEM

Caches

Reduce average memory access latency

Mind the 3C of cache (in-)effectivity

Caches have to be kept coherent

Ensure that all Ps see the same (most
recent) value

Write-back (WB) policy

Coherence problem?

Write-through (WT) policy

Coherence problem?

17

COHERENCE PROTOCOL FOR AMD64

18Pat Conway and Bill Hughes. 2007. The AMD Opteron Northbridge Architecture. IEEE Micro 27, 2 (March 2007), 10-21.

Cache Miss

PROBLEMS WITH SCALABLE CACHE COHERENCE

Aspect 1: Bandwidth

Bus as a shared medium is not scalable at all

Replace bus with a switched network (direct or indirect)

Aspect 2: Snooping overhead

Interesting: most snoops result in no action

Simply because no copy of the corresponding cache line is present

Broadcast protocol is not scalable

Revert to a directory protocol, only addressing processors that hold cache line
copies (broadcast/multicast)

19

COHERENCE VS. CONSISTENCY (1)
Memory coherence

Operation serialization

-> maintained “program order”

-> read returns last write

Stores to the same address should be
seen by all processors in the same
order

Writes to an address by a processor
will eventually be observed by other
processors (question is “when”)

Coherence is not visible to software
20

P0 P1 P2 P3

ST A=1

ST A=2

LD A LD A

ST B=1

LD B

COHERENCE VS. CONSISTENCY (2)

A consistency model defines
constraints on the order in which
memory operations must appear to be
performed (become visible)

Affects operations to the same
location (address) and to different
locations

Consistency is visible to software

21

Program
order

P0 P1 P2

ST A=1

ST A=2

LD C

ST B=1

ST C=1

LD C

ST B=1

ST A=1

ST A=2

ST C=1

LD C

LD B LD B

SEQUENTIAL CONSISTENCY

Processors issue memory requests in program order

Switch set randomly after each memory operation

=> Provides sequential ordering among all operations

22

P

MEMORY

P P P

SEQUENTIAL CONSISTENCY
Sufficient condition for SC:

„A multiprocessor is sequentially consistent if the result of any execution is the
same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in
the order specified by its program“ – Lamport, 1979

Every processor issues memory requests in program order

Memory operations happen (start and end) atomically

Must wait for a store to complete before issuing next operation

After a load, issuing processor waits for load to complete, before issuing next
operation

Easily implemented with a shared bus

Bus as synchronization point, serializing all accesses

23

PROBLEMS WITH SEQUENTIAL CONSISTENCY
Aspect 1: difficult to implement efficiently in hardware

No concurrency among memory access

Strict ordering of memory accesses at each processor (node)

Essentially precludes out-of-order CPUs

Aspect 2: unnecessarily restrictive

Most parallel programs won‘t notice out-of-order accesses

Aspect 3: conflicts with latency hiding techniques

Which relies on many concurrent outstanding requests

Fixing SC performance

Revert to a less strict consistency model (relaxed or weak consistency)

Programmer specifies when ordering matters

24

25

Programmer Compiler Hardware Comment

Strict
Consistency

What most/novice
programmer expects Complete disaster!

Global ordering / clock
required! No OOO,

latency hiding difficult!
Only for uniprocessors

Sequential
Consistency

Least astonishing

Typically assumed for cache

coherence

Disaster! Almost all
optimizations are

illegal, no reordering!

Disaster! Only one
outstanding request!

No OOO!

Overkill, most
programmers rely on

synchronization
intrinsics!

Processor
Consistency

Sometimes unexpected
behavior (membar); however,

locks (RMWs) work

May now reorder
loads across stores,

potential left

Allows for FIFO store
buffers & multiple

outstanding requests

Typical today

x86

Relaxed
Consistency
(WC,RC,EC)

Very hard (membars where
needed)

Sweet, sweet
freedom!

Allows for unordered,
coalescing SBs &

OOO CPUs

Data-Race-Free
(DRF)

Hard, but better (all races
must be marked using strong

memops)

Sweet, sweet
freedom!

Allows for unordered,
coalescing SBs &

OOO CPUs
Java, C++

26

Programmer Compiler Hardware Comment

Strict
Consistency

What most/novice
programmer expects Complete disaster!

Global ordering / clock
required! No OOO,

latency hiding difficult!
Only for uniprocessors

Sequential
Consistency

Least astonishing

Typically assumed for cache

coherence

Disaster! Almost all
optimizations are

illegal, no reordering!

Disaster! Only one
outstanding request!

No OOO!

Overkill, most
programmers rely on

synchronization
intrinsics!

Processor
Consistency

Sometimes unexpected
behavior (membar); however,

locks (RMWs) work

May now reorder
loads across stores,

potential left

Allows for FIFO store
buffers & multiple

outstanding requests

Typical today

x86

Relaxed
Consistency
(WC,RC,EC)

Very hard (membars where
needed)

Sweet, sweet
freedom!

Allows for unordered,
coalescing SBs &

OOO CPUs

Data-Race-Free
(DRF)

Hard, but better (all races
must be handled using strong

memops)

Sweet, sweet
freedom!

Allows for unordered,
coalescing SBs &

OOO CPUs
Java, C++

Freedom PerformanceComplexity

IN A NUTSHELL

Coherence is a super expensive protocol hiding architecture details

Providing the illusion of one big central cache based on physically distributed
caches

Costs scale with the number of endpoints (processors) -> conflictive with multi-/
many-core

Consistency is a contract in between programmer and architecture

Similar to the Instruction Set Architecture (ISA), but regarding ordering and
visibility of memory operations

Costs of strong consistency scale with number of endpoints (processors) and
memory parallelism (memory controllers) -> conflictive with multi-/many-core

27

GPU COHERENCE & CONSISTENCY
MODEL

COHERENCE IN CPUS & GPUS

29

Deep and steep memory hierarchy

Exclusive L1/L2, shared LLC

Requires cache coherence

Flat memory hierarchy

Exclusive L1, shared L2

Survives without cache coherence?

ADDRESS SPACE VIEW - UNIPROCESSOR

Uniprocessor – single memory
controller

Even with caches no coherence
problem

Homonyms: same name for
different data

Which cache line belongs to which
process

On process switch, flush caches
(WBINVD) or use ID-tagged cache

Address space identifier (ASID)

30

ADDRESS SPACE VIEW - MULTIPROCESSOR

Multiprocessor – single memory
controller

Multiple caches -> multiple copies
possible

Coherence protocol required

Memory controller acts as
synchronization point

Is responsible for appropriate
coherence actions

31

ADDRESS SPACE VIEW - MULTIPROCESSOR

Multiprocessor – multiple
memory controllers

Now multiple memory controllers,
all act as synchronization point

Which MC is responsible?

Identified by static mapping

Excursion: COMA

No static mapping, main memory
is a giant cache

32

ADDRESS SPACE VIEW - MULTIPROCESSOR

Multiprocessor – multiple
memory controllers

Cache hierarchy

Exclusive L1/L2 (per core)

Shared L3/LLC

LLC cache is sliced (banked)

Multiple concurrent accesses

No implications towards
coherence

Same principle as before

33

GPU MEMORY HIERARCHY – L2

GPU LLC cache is sliced, too

But why is no coherence
required?

Remember that GPUs can
tolerate memory latency

34SMs

GPU MEMORY HIERARCHY – L2

LLCs are part of the fixed
address mapping

Latency increases significantly

GPUs actually don’t care

CPUs would care

Effective cache size is reduced
if data is not equally distributed
among the MCs

Cache size not as important for
GPUs as for CPUs

35

GPU MEMORY HIERARCHY – L1
So far so good for LLC (L2)

What about L1?

Local to an SM/thread block

Exclusive cache, coherency guarantees
only for the start/end of a thread
block

Making writes globally visible by write-
through

-> No need to write-back caches upon
end-of-life

Invalidating caches at kernel completion
boundaries

-> No memory traffic

-> Software-controlled coherence

36

CUDA SAFETY NET
Fences as memory barriers for fine-grained consistency control

void __threadfence()

Separates all writes to shared memory and global memory:

All writes before the call are visible to all threads on the device before the call
completes

Those after the call are not visible until the call is completed

void __threadfence_block()

Same, but only for threads within the same thread block

void __threadfence_system()

Same, but including pinned host memory and visibility for all threads on the
device

37

GPU MEMORY ARCHITECTURE
Address-sliced crossbars

High-bandwidth, contention-free
path into memory

L1 Cache

128B cache line size == 32 threads
x 4B

Write-invalidate, no write-allocate

L2 Cache (LLC)

32B cache line size (stores, over-
fetch)

Write-back, write-allocate

GPU kernels

Write-once quite common

-> no need for expensive cache
fills

38

Address-
sliced

crossbars

addr[0:max/2] L2
 C

ac
he

M
em

or
y

C
on

tro
lle

r #
0

G
D

D
R

 C
ha

nn
el

Address-
sliced

crossbars

addr[max/2:max] L2
 C

ac
he

M
em

or
y

C
on

tro
lle

r #
1

G
D

D
R

 C
ha

nn
el

Streaming Multiprocessor #0

L1 Cache Shared
Memory

MUX

Write-through, no-allocate
L1
Write-back, allocate-on-write
L2

DMA Copy
Engine

WRAPPING UP

SUMMARY
It’s not about coherence: coherence is an artificial problem
introduced by caches

CPUs make many guarantees about coherence, due to reasons including legacy
codes, the user, and the unconstrained use model

Latency minimization prohibits moving the LLCs towards the memory controller

It‘s all about consistency

Consistency for GPUs is highly relaxed, with few guarantees. Main reasons are
that there are no legacy codes, and that the used model is constrained to BSP-
like ones.

Synchronization points are essentially the start and end of life of a thread block

Latency toleration allows to live with little cache capacity and to move the LLCs
to the MCs

40

