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REMINDER: OUR VIEW OF A GPU
Software view: a programmable many-core scalar architecture


Huge amount of scalar threads to exploit parallel slackness, operates in lock-step


SIMT: single instruction, multiple threads


IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL


Hardware view: a programmable multi-core vector architecture

SIMD: single instruction, multiple data


Illusion of scalar threads: hardware packs them into compound units


IT’S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS
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CONSISTENCY AND COHERENCE
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https://www.flickr.com/photos/starwarsblog/632644970/ 

Consistency: factual

Coherence: consistency over time

https://www.flickr.com/photos/starwarsblog/632644970/


EXAMPLE #1 (EXPECTATIONS AND REALITY) 
Assume a coherent shared memory system


Can both if clauses be evaluated as “true”?


Yes: Assume stores can pass other stores (write 
buffering)


Other possible sources: out-of-order architecture, 
compiler optimizations, memory system contention, …
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Thread 0 on processor 0


a = 0;

...

a = 1;

if ( b == 0 ) 

{

  ...

}


Thread 1 on processor 1


b = 0;

...

b = 1;

if ( a == 0 ) 

{

  ...

}
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EXAMPLE #2 (MORE FRUSTRATIONS) 
Producer-Consumer scheme


Assume a coherent shared memory system


Variables are initialized to zero


Which values can be printed out?


For modern CPU architectures, both 0 and 1
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Thread 0 on processor 0


a = 1;

flag = 1;


Thread 1 on processor 1


while ( flag == 0 );

print a;
 M1M0

P0 P1

a flag



http://www.linuxjournal.com

RELAXING CONSISTENCY 

We relax consistency for a good reason: performance


Maintaining a strict and global ordering is incredibly 
expensive and hinders optimizations, e.g.:


Store buffers


Out-of-order processor architectures


Multiple outstanding memory transactions


Sliced (banked) caches


As we will see, GPUs are a very radical example 
of such relaxations
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SHARED MEMORY MULTIPROCESSORS



SHARED MEMORY
Similarities to executing multiple processes by time-
sharing on a single processor


Process: defined as a single (virtual) address space with 
one or more threads of control


Multiple threads share one address space by definition


Portions of the address space can be shared, multiple virtual 
addresses (VA) map to a single physical address (PA)


Communication and synchronization

Writes to a logically shared address by one thread are visible to 
reads of the other threads


Rely on memory operations, including atomic operations


Virtual address space typically quite structured

Private and shared segments
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T0
SHARED 

MEM T1
store

load

Perfectly timed load



SHARED MEMORY
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Culler et al, Parallel Computer Architecture, MK 1999

An address space defines a range of discrete addresses; each address may correspond 
to a different resource



SHARED MEMORY
Extending to a shared-memory multiprocessor by adding processors


Typical shared memory multiprocessor interconnection scheme


(Non-) Uniform Memory Access ((N)UMA)


Recent CPU architectures?
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Culler et al, Parallel Computer Architecture, MK 1999

(a)Late FSB implementations – illusion of a bus network

(b)Opteron (HT), Intel Nehalem (QPI), Sandy Bridge etc.


(c)Early FSB implementations – true bus networks



FUNDAMENTAL DESIGN ISSUES OF A 
COMMUNICATION ABSTRACTION

Communication abstraction

Contract, similar to ISA


1. Naming

What data can be named?


2. Operations

Operations on named data


3. Ordering

Ordering among operations


4. Communication/   
    Replication of data


5. Performance
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Compilation or 
library

OS support

Programming Model

(Multiprogramming, SM, MP, DP)

Application

Communication 
hardware

Physical communication medium

BYPASS
Communication abstraction

User/system boundary



FUNDAMENTAL DESIGN ISSUES: NAMING
Shared memory


Naming: Thread can name locations in the register and the virtual address space


Segments for code, stack, heap


Access to shared variables mapped to load/store instructions on virtual addresses


Global physical address space: shared virtual addresses map to the same physical 
address


Independent local physical address spaces: page faults


Message passing

Message passing in hardware, but matching/buffering in software


Issue of naming arises at each abstraction level of a parallel 
architecture
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FUNDAMENTAL DESIGN ISSUES: OPERATIONS

Shared memory

Loads and stores on addresses and registers (CISC), only registers (RISC)


Reading/writing shared variables


Atomic read-modify-write operations on shared variables


Message passing

Sending/receiving on (private) local addresses and process identifiers


Collective operations


Note the complexity difference
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FUNDAMENTAL DESIGN ISSUES: ORDERING
Shared memory


Threads operate independently, so which order to apply?


Among memory operations: sequential program order


Variables are read and modified: top-to-bottom, left-to-right order of the 
program


Message passing

MPI guarantees strong ordering


Tag matching, matching results in linear search(es)


Receive any tag/sender will just return the first matched queue entry


Ordering has big performance impact

Relaxed ordering models

14



SHARED MEMORY MULTIPROCESSORS
Multiple execution contexts sharing a single address space


Multiple processes/threads, multiple data (MIMD)


Simplification: Single Program Multiple Data (SPMD)


Parallelism type: TLP, DLP


Advantages:

Applications: looks like multi-threaded uniprocessor


OS: only evolutionary extensions required


OS-bypass for communication


Software development: first correctness, then performance


Disadvantages:

Synchronization is very difficult


Implicit communication is harder to optimize
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Symmetric Multiprocessors (SMP) and Chip Multiprocessors (CMP) are the most 
successful parallel machines ever

Theoretical foundation: 
Parallel Random Access Machine (PRAM)



COHERENCE AND CONSISTENCY BASICS 



RECAP: THE COHERENCE PROBLEM

Caches 

Reduce average memory access latency


Mind the 3C of cache (in-)effectivity


Caches have to be kept coherent

Ensure that all Ps see the same (most 
recent) value


Write-back (WB) policy

Coherence problem?


Write-through (WT) policy

Coherence problem?
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COHERENCE PROTOCOL FOR AMD64 

18Pat Conway and Bill Hughes. 2007. The AMD Opteron Northbridge Architecture. IEEE Micro 27, 2 (March 2007), 10-21.

Cache Miss



PROBLEMS WITH SCALABLE CACHE COHERENCE

Aspect 1: Bandwidth

Bus as a shared medium is not scalable at all


Replace bus with a switched network (direct or indirect)


Aspect 2: Snooping overhead

Interesting: most snoops result in no action


Simply because no copy of the corresponding cache line is present


Broadcast protocol is not scalable


Revert to a directory protocol, only addressing processors that hold cache line 
copies (broadcast/multicast)
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COHERENCE VS. CONSISTENCY (1)
Memory coherence


Operation serialization 


-> maintained “program order”


-> read returns last write


Stores to the same address should be 
seen by all processors in the same 
order


Writes to an address by a processor 
will eventually be observed by other 
processors (question is “when”)


Coherence is not visible to software
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P0 P1 P2 P3

ST A=1

ST A=2

LD A LD A

ST B=1

LD B



COHERENCE VS. CONSISTENCY (2)

A consistency model defines 
constraints on the order in which 
memory operations must appear to be 
performed (become visible)


Affects operations to the same 
location (address) and to different 
locations


Consistency is visible to software
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Program 
order

P0 P1 P2

ST A=1

ST A=2

LD C

ST B=1

ST C=1

LD C

ST B=1

ST A=1

ST A=2

ST C=1

LD C

LD B LD B



SEQUENTIAL CONSISTENCY

Processors issue memory requests in program order


Switch set randomly after each memory operation 


=> Provides sequential ordering among all operations
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SEQUENTIAL CONSISTENCY
Sufficient condition for SC:


„A multiprocessor is sequentially consistent if the result of any execution is the 
same as if the operations of all the processors were executed in some sequential 
order, and the operations of each individual processor appear in this sequence in 
the order specified by its program“ – Lamport, 1979


Every processor issues memory requests in program order


Memory operations happen (start and end) atomically 

Must wait for a store to complete before issuing next operation


After a load, issuing processor waits for load to complete, before issuing next 
operation


Easily implemented with a shared bus

Bus as synchronization point, serializing all accesses
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PROBLEMS WITH SEQUENTIAL CONSISTENCY
Aspect 1: difficult to implement efficiently in hardware


No concurrency among memory access


Strict ordering of memory accesses at each processor (node)


Essentially precludes out-of-order CPUs


Aspect 2: unnecessarily restrictive

Most parallel programs won‘t notice out-of-order accesses


Aspect 3: conflicts with latency hiding techniques

Which relies on many concurrent outstanding requests


Fixing SC performance

Revert to a less strict consistency model (relaxed or weak consistency)


Programmer specifies when ordering matters
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Programmer Compiler Hardware Comment

Strict 
Consistency

What most/novice 
programmer expects Complete disaster!

Global ordering / clock 
required! No OOO, 

latency hiding difficult!
Only for uniprocessors

Sequential 
Consistency

Least astonishing

Typically assumed for cache 

coherence

Disaster! Almost all 
optimizations are 

illegal, no reordering!

Disaster! Only one 
outstanding request! 

No OOO!

Overkill, most 
programmers rely on 

synchronization 
intrinsics!

Processor 
Consistency

Sometimes unexpected 
behavior (membar); however, 

locks (RMWs) work

May now reorder 
loads across stores, 

potential left

Allows for FIFO store 
buffers & multiple 

outstanding requests

Typical today

x86

Relaxed 
Consistency
(WC,RC,EC)

Very hard (membars where 
needed)

Sweet, sweet 
freedom!

Allows for unordered, 
coalescing SBs & 

OOO CPUs

Data-Race-Free 
(DRF)

Hard, but better (all races 
must be marked using strong 

memops)

Sweet, sweet 
freedom!

Allows for unordered, 
coalescing SBs & 

OOO CPUs
Java, C++
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Programmer Compiler Hardware Comment
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needed)
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Data-Race-Free 
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Hard, but better (all races 
must be handled using strong 

memops)

Sweet, sweet 
freedom!

Allows for unordered, 
coalescing SBs & 

OOO CPUs
Java, C++

Freedom PerformanceComplexity



IN A NUTSHELL

Coherence is a super expensive protocol hiding architecture details

Providing the illusion of one big central cache based on physically distributed 
caches


Costs scale with the number of endpoints (processors) -> conflictive with multi-/
many-core


Consistency is a contract in between programmer and architecture

Similar to the Instruction Set Architecture (ISA), but regarding ordering and 
visibility of memory operations


Costs of strong consistency scale with number of endpoints (processors) and 
memory parallelism (memory controllers) -> conflictive with multi-/many-core
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GPU COHERENCE & CONSISTENCY 
MODEL



COHERENCE IN CPUS & GPUS
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Deep and steep memory hierarchy

Exclusive L1/L2, shared LLC

Requires cache coherence

Flat memory hierarchy

Exclusive L1, shared L2


Survives without cache coherence?



ADDRESS SPACE VIEW - UNIPROCESSOR

Uniprocessor – single memory 
controller


Even with caches no coherence 
problem


Homonyms: same name for 
different data


Which cache line belongs to which 
process


On process switch, flush caches 
(WBINVD) or use ID-tagged cache


Address space identifier (ASID)
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ADDRESS SPACE VIEW - MULTIPROCESSOR 

Multiprocessor – single memory 
controller


Multiple caches -> multiple copies 
possible


Coherence protocol required


Memory controller acts as 
synchronization point


Is responsible for appropriate 
coherence actions
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ADDRESS SPACE VIEW - MULTIPROCESSOR 

Multiprocessor – multiple 
memory controllers


Now multiple memory controllers, 
all act as synchronization point


Which MC is responsible?

Identified by static mapping


Excursion: COMA

No static mapping, main memory 
is a giant cache
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ADDRESS SPACE VIEW - MULTIPROCESSOR 

Multiprocessor – multiple 
memory controllers


Cache hierarchy

Exclusive L1/L2 (per core)


Shared L3/LLC


LLC cache is sliced (banked)

Multiple concurrent accesses


No implications towards 
coherence


Same principle as before
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GPU MEMORY HIERARCHY – L2 

GPU LLC cache is sliced, too


But why is no coherence 
required?


Remember that GPUs can 
tolerate memory latency

34SMs



GPU MEMORY HIERARCHY – L2 

LLCs are part of the fixed 
address mapping


Latency increases significantly


GPUs actually don’t care


CPUs would care


Effective cache size is reduced 
if data is not equally distributed 
among the MCs


Cache size not as important for 
GPUs as for CPUs
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GPU MEMORY HIERARCHY – L1
So far so good for LLC (L2)


What about L1?

Local to an SM/thread block


Exclusive cache, coherency guarantees 
only for the start/end of a thread 
block


Making writes globally visible by write-
through


-> No need to write-back caches upon 
end-of-life


Invalidating caches at kernel completion 
boundaries


-> No memory traffic


-> Software-controlled coherence
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CUDA SAFETY NET
Fences as memory barriers for fine-grained consistency control

void __threadfence()


Separates all writes to shared memory and global memory:


All writes before the call are visible to all threads on the device before the call 
completes


Those after the call are not visible until the call is completed


void __threadfence_block()

Same, but only for threads within the same thread block


void __threadfence_system()

Same, but including pinned host memory and visibility for all threads on the 
device

37



GPU MEMORY ARCHITECTURE
Address-sliced crossbars


High-bandwidth, contention-free 
path into memory


L1 Cache

128B cache line size == 32 threads 
x 4B


Write-invalidate, no write-allocate


L2 Cache (LLC)

32B cache line size (stores, over-
fetch)


Write-back, write-allocate


GPU kernels

Write-once quite common 


-> no need for expensive cache 
fills
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WRAPPING UP



SUMMARY
It’s not about coherence: coherence is an artificial problem 
introduced by caches 


CPUs make many guarantees about coherence, due to reasons including legacy 
codes, the user, and the unconstrained use model


Latency minimization prohibits moving the LLCs towards the memory controller


It‘s all about consistency

Consistency for GPUs is highly relaxed, with few guarantees. Main reasons are 
that there are no legacy codes, and that the used model is constrained to BSP-
like ones.


Synchronization points are essentially the start and end of life of a thread block


Latency toleration allows to live with little cache capacity and to move the LLCs 
to the MCs
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