Machine Learning Essentials © U. Kothe
Summer Semester 2023 Exercise 4 ullrich.koethe@iwr.uni-heidelberg.de

Exercise 4

Deadline: 13.06.2023, 16:00

This exercise is dedicated to linear regression and its efficient implementation for large sparse
matrices. We will test this method on the relevant application of computer tomography.

Regulations

Please hand in your solution as a Jupyter notebook tomography. ipynb, accompanied with exported
tomography.html. It is important that you stick to these file naming conventions! Zip all
files into a single archive ex04.zip and upload this file to MaMPF before the given deadline.

Moreover, please set your Anzeigename/display name and Name in Uebungsgruppen/name
in tutorials in MaMPF to your real name, which should be identical to your name in muesli and
make sure you join the submission of your team via the invitation code before the submission
deadline. Check out https://mampf.blog/handing-in-homework-assignments for instructions.

Setting

You find yourself in a two-dimensional world in the role of a medical doctor. A patient (we will call
him H.S. here for anonymity) walks into your hospital and complains about a headache. A close
examination of the head provides no exterior clues as to the cause of the pain, and you soon realize
that you will have to perform computer tomography. Unfortunately, the computer for processing
recorded data is broken. Nevertheless, you let H.S. enter the tomograph and take X-ray images of
his head from several angles. You send H.S. back to the waiting room and start to think about how
you might process the scans using only your private laptop.

The required data files are available at https://tinyurl.com/HD-EML-hs-tomography-zip and
as an external link on MaMPF.

Preliminaries

For the scans, H.S.’s 2D head was placed between an X-ray source and a 1D sensor array. The sensor
elements record the accumulated signals of many parallel rays passing through the head (see left
side of figure 1). To reconstruct all the internal structures, multiple measurements need to be taken
from different angles .. The resulting tomogram is an image p € RM*M where each pixel encodes
the local X-ray absorption coefficient of the patient’s head (bright for bones, gray for soft tissue,
black for air). The least-squares reconstruction algorithm will create a flattened version 3 € R? of
p that needs to be reshaped into a 2D image to be displayed. The pixels p; ; are related to the
vector elements 3; by the formula j = j, + Mjp, as shown in figure 1.

The sensor consists of a 1-dimensional array of N, sensor elements that register parallel X-rays, and
the emitter-detector setup is rotated into IV, different orientations «;,. The measured intensities are
commonly displayed as a 2D image called a sinogram, see figure 3. For least-squares reconstruction,
we flatten the sinogram s € RNe*Mr into the response vector y € R™Y. Tts elements y, are defined
by the relation ¢ = i, + Npi,, where 7, and i, are the indices of the sensor elements and sensor
orientations respectively.

We can now describe the relation between the tomogram (3 and the measured intensities y as a
linear projection with projection matrix X € RV*D:

X-B=y (1)

1/5

Machine Learning Essentials © U. Kothe
Summer Semester 2023 Exercise 4 ullrich.koethe@iwr.uni-heidelberg.de

Intuitively, entry X;; should be interpreted as a weight which encodes how much the sensor response
yi is influenced by the absorption at pixel 3.

In the continuous domain, the measured intensity Isensor Of @ single ray r depends on how much of
the original radiation Isyyrce is absorbed by the material between emitter and sensor. This can be
modelled as

Lsensor = Isource * XD <_/ M((I, b) da db)7 (2)
aber

where 1 describes the material’s absorption properties at each spatial position (a,b) and can be
seen as a continuous version of the discrete tomography image p defined above. For simplicity, we
assume that the raw sensor measurements are already subjected to preprocessing which computes
the logarithm of this formula, so that the response is defined by

J=In <I> (3)

sensor

= /beru(a,b) da db. (4)

For practical computation, we need to discretize this formula. Each sensor element is essentially a
bin collecting radiation from many parallel rays. We assume that a ray intersecting the sensor array
inbetween two bins distributes its intensity among both. The ratio of distribution is determined in
a linear fashion by how close the intersection is to the center of either bin.

Ezample: Consider the ray passing through 19 at angle o, as illustrated in figure 1, which inter-
sects the sensor array at position 4.35 (between elements 4 and 5). Sensor element 4 captures 65%
of this ray’s intensity and sensor element 5 captures 35%. This is encoded in the weight matrix X
by setting X4+Npio, 19 = 0.65 and X5+Npio, 19 = 0.35.

Thanks to this definition, the integral in equation 4 can be discretized into a sum, and writing the
sum in matrix notation gives the linear system of equation 1.

Ja
Jb image“ B
o | 1| 2134
56| 78| o9

10 11 (\] 13 14

15 16 17 18 19

20 | 21 | 22 | 23 | 24 /“'

6]9

Figure 1: Sketch of the projection of a 5 X 5-image p onto a 7 pixel sensor array that has been rotated around the
center of the image by the angle o (left). Small numbers reflect the indices j within 8 and ¢, within one slice of
s, respectively. While both the X-ray source and the sensors are naturally situated outside the tissue, the projection
can be made easier by virtually placing the sensor at the image center and considering the rays to come from both
directions (right). In any case, for each individual coordinate in 3, we trace the ray passing through that point and
calculate how much of its intensity is collected by which sensor pixels.

2/5

Machine Learning Essentials © U. Kothe
Summer Semester 2023 Exercise 4 ullrich.koethe@iwr.uni-heidelberg.de

1 Constructing the matrix X (22 points)

With only one projection, solving equation 1 is ill-posed and a useful reconstruction of 3 is impos-
sible. The problem becomes well-posed by using sufficiently many projections of 3 under different
angles «, whose recordings are just concatenated in the flattened measurement vector y or the
2D sinogram (figure 3), respectively. Constructing the corresponding weight matrix X is the main
difficulty of this exercise.

Implement a function X = construct_X(M, alphas, Np = None) which, given the desired tomo-
gram size D = M x M, a list of measurement angles (ap,a1,...) (in degrees) and an optional
sensor resolution N,, returns the matrix X, which completely describes the setup of our simplified
CT scanner.

If Np is not given, choose a value large enough to fit the diagonal of the image 3, like N, = [\/5 . M] .
Choosing an odd number of sensor elements will make it easier to align the image coordinates with
the coordinates of the sensor array: You can define a common coordinate origin and then find ray
intersections by projecting the tomogram’s pixel coordinates along the current ray orientation onto
the rotated sensor array, see figure 1.

In the examination scenario for patient H.S., we have M = 195, i.e. the tomogram has D = 38025
pixels. The sensor has N, = 275 bins, and intensities have been measured at IV, = 179 projection
angles, resulting in a response vector of size N = 49225. Thus, matrix X has shape 49225 x 38025
(almost 2 billion entries), and you will run into trouble if you implement construct_X() naively.

Fortunately, the intensity of each ray is only distributed among the two sensor elements closest to
the ray’s intersection with the sensor. Consequently, each image pixel can contribute to no more
than two sensor elements under any given measurement angle (see right side of figure 1) and the
vast majority of entries of X are actually zero. This is called a sparse matriz, and the scipy module
scipy.sparse! provides powerful tools to take advantage of this property: it allows you to save
memory by offering spare matrix classes that store only the non-zero entries, and to skip unnecessary
calculations by offering specialized implementations of linear algebra functionality. Specifically, the
class coo_matrix (“COOrdinate” format) is recommended to create X, and the class csc_matrix
(“Compressed Sparse Column” format) is best for solving the linear system. Converting between
different matrix types is easy and results in faster code than using the same type throughout.

However, using a sparse matrix is not enough to make your code efficient. You should also vectorize
the function construct_X() (cf. exercise 1). A good way of doing this is to create an array C € R?* P
holding the coordinates of the tomogram’s pixel centers, i.e.

Coj = ap + ja - h (the a coordinate of pixel j)
Cij =bo + jb - h (the b coordinate of pixel j)

with h being the pixel distance and j = j, + M, as defined earlier (numpy.mgrid is useful here).
In this case, the pixel distance for both image and sensor is simply A = 1. The current orientation
can be expressed by a unit vector n along the rotated sensor, and the projection p of each pixel
onto the sensor is simply a linear projection according to

p:nTC+807

where sg is the distance between the first sensor element and the sensor’s coordinate origin. The
weights X for each angle can now be computed from p by numpy’s vector functions. In the end,
the valid elements of X are represented by their indices (i,7) and the corresponding weights. The
constructor of class coo_matrix expects this information to be provided by three 1-dimensional
arrays i_indices, j_indices, and weights, resulting in the call

X = coo_matrix((weights, (i_indices, j_indices)), shape=(N, D), dtype = numpy.float32),

nstall scipy via conda as usual.

3/5

Machine Learning Essentials © U. Kothe
Summer Semester 2023 Exercise 4 ullrich.koethe@iwr.uni-heidelberg.de

Figure 2: Visualization of matrix X for M = 10, Np = 15 and three Figure 3: Sinogram visualization of y.
projections at angles (—33,1,42). You can also find this matrix in the Each column shows the sensor response
data-zip as ‘hs_tomography/X_example.npy’. for a different angle o € [—90,...,90].

where we used element type float32 to save even more memory. Check the scipy documentation
for more details about how this works. In our example implementation, constructing the sparse
49225 x 38025 matrix takes about 5 seconds on a standard laptop.

As in real-world scenarios, there is some ambiguity left to this task: Where is the origin of the
coordinate system, which direction is @ = 0, and how is y oriented? The answers to these questi-
ons determine the appropriate indexing order and sign of the expressions, and figuring out these
details is part of your task (emulating what often happens in the real world). To check whether
your matrix construction is correct, visualize the result of construct_X(10, [-33, 1, 42]) with
pyplot.imshow() and compare it to the matrix shown in figure 2, which you find in the data-zip
under ‘hs_tomography/X_example.npy’2. Note that you will have to convert your sparse matrix
to a dense numpy-array for visualization.

2 Recovering the image (9 points)

The material for this sheet contains the list of angles and the measured sensor data y for two versions
of the experiment. The smaller one was created with M = 77, N, = 109 and 90 projection angles.
The larger one was created with M = 195, N, = 275 and 179 projection angles. The exact set of
angles and the corresponding response vectors y can be found in the data-zip as ‘alphas_77.npy’
and ‘y_195.npy’ resp. ‘alphas_195.npy’ and ‘y_77.npy’ (in folder ‘hs_tomography’). We re-
commend the smaller version of the data for debugging your code. However, its resolution is insuf-
ficient to diagnose the cause for your patient’s headache. If you can recognize the head in the small
tomogram, your code is probably correct, and you should switch to the larger version.

Exactly how many non-zero entries does X have? Use scipy’s tools to find out and report the
sparsity of X.

With the ability to construct the matrix X and having obtained a set of projections y, you are
now able to reconstruct the original image 3. In theory, you could try to solve the equation system
directly via the pseudo-inverse

B=X"X)""- X"y,
but this is not recommended because it ignores sparsity and is therefore very slow.

Fortunately, scipy already gives you access to efficient solvers for sparse linear equation systems!
Find out how to use scipy.sparse.linalg.lsqr() to obtain the least-squares solution to your
problem. The solver’s low default tolerance parameters atol = 1e-08 and btol = 1e-08 lead to
high quality solutions, but also long computation times on the large version of the data. A good

2¢_ npy’ is numpy’s matrix file format. You can load it with X_ex = np.load(’hs_tomography/X_example.npy’)

4/5

Machine Learning Essentials © U. Kothe
Summer Semester 2023 Exercise 4 ullrich.koethe@iwr.uni-heidelberg.de

trade-off might be atol = btol = 1e-05, but you can reduce the tolerance once your are confident
that your code is correct.

Reconstruct the tomogram and plot it as a 2D image. Give a diagnosis on what causes H.S.’s
headache and propose a treatment.

If you didn’t manage to correctly construct X in task 1, you can find a precomputed weight matrix
for the smaller version of the experiment in ‘hs_tomography/X_77.npy’ and use it for this task. You
can load it with X = np.load(’hs_tomography/X_77.npy’, allow_pickle=True) and convert it
to a sparse matrix with X = scipy.sparse.csc_matrix(X.all()).

3 Minimizing the radiation dose (9 points)

As a doctor, you do not want to expose your patients to unnecessary radiation. Try to reduce the
number of projection angles in a sensible way and visualize how this changes the quality of the
reconstruction. In the case of H.S., what would you say is the minimal number of projections that
still allows you to resolve the cause of his headache?

5/5

