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 We use a Monte Carlo method to estimate 
the value of Pi (π)

 Idea: Count the
share of random
points (x, y) whose
distance to (0,0)
is 1 or less

 Naturally 
parallelizable
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Source: Wikipedia



N = 1000000
def inCircle(p):

x, y = random(), random()
return 1  if x*x + y*y < 1 else 0

myplus = lambda a, b: a + b

rawDataRDD = sc.parallelize(range(0,N), partitions)
inCircleRDD = rawDataRDD.map(inCircle)
count = inCircleRDD.reduce(myplus)

print("Pi is roughly %f" % (4.0 * count / N))
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Generates two pseudo-random 
numbers in [0.0, 1.0)

True iff distance of 
(x,y) to origin is < 1

Generates an iterable
(“lazy list”) from 0 to N-1



import sys
from random import random
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
"""Usage: pi [partitions]""“

sc = SparkContext (appName="PythonPi")
partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
N = 100000 * partitions

… [code as above, without N = 1000000] …

sc.stop()
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 Open terminal window
 cd spark/examples/src/main/python
 spark-submit pi.py 1

▪ => Pi is roughly 3.139168

 spark-submit pi.py 2

▪ => Pi is roughly 3.138352

 spark-submit pi.py 3

▪ => Pi is roughly 3.142220

 spark-submit pi.py 4

▪ => Pi is roughly 3.142624
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Structured Spark APIs: 

DataFrames



Spark’s Ecosystem 

9From Spark: The Definitive Guide, by Matei Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)

We know 

RDDs already

We will study 

DFs today

Today: MLlib

introduction

https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68276426


What are DataFrames (DF)?

 A table of data with rows and (named) columns

 Like a spreadsheet with named columns 

 Or dataframes in R, Python/Pandas or tables in DBs

 Can span thousands of computers

From Spark: The Definitive Guide, by Matei Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)

DataFrame, 

columns are 

named
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DataFrame Details

 DataFrame is the most commonly used API in Spark 

 Schema

 Each DF has an associated schema: essentially, a 

definition of column names and their types

 Can be set programmatically, or inferred from data

 Partitions

 Spark breaks up DFs into chunks called partitions 

 A P. is a collection of rows on one physical machine

 Note: number of partitions should be ~ number of 

executors (worker CPUs/cores): if you have one partition, 

Spark will have a parallelism of only one, even if you have 

thousands of executors!
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SparkSession vs. SparkContext

 (!) In the previous slides, we used SparkContext to 

initialize Spark and get access to APIs

 Nowadays, it is preferred to use SparkSession (via a 

builder method) 

 This instantiates the Spark contexts more robustly

 Python:
# Creating a SparkSession in Python

from pyspark.sql import SparkSession

spark = SparkSession.builder.master("local")\

.appName("Word Count")\

.config("spark.some.config.option", "value")\

.getOrCreate()
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Example – Using DataFrames

 Assume that your SparkSession-object is called „spark“

 We use a small data set with US flights 

 See https://github.com/databricks/Spark-The-Definitive-

Guide/tree/master/data/flight-data

 File 2015-summary.csv (csv = comma-separated values):

 DEST_COUNTRY_NAME,ORIGIN_COUNTRY_NAME,count

 United States,Romania,15

 United States,Croatia,1

 United States,Ireland,344

 …

 For more explanations, see Sec. 2 of „Spark: The 

Definitive Guide,..”, 2018 (online, see book list)
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Read Data with Schema Inference

 We want to read this data into a DataFrame, and let 
Spark guess the schema of our DataFrame
 To get the schema information, Spark reads in a little bit 

of the data and then attempts to parse the types in those 
rows according to the types available in Spark

 You also have the option of strictly specifying a schema 
when you read in data (recommended, see later)

 Python:

flightData2015 = spark\

.read\

.option("inferSchema", "true")\

.option("header", "true")\

.csv(".../flight-data/csv/2015-summary.csv")
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Querying Data

 Let us find the top five destination countries

 Python:
from pyspark.sql.functions import desc

flightData2015\
.groupBy("DEST_COUNTRY_NAME")\
.sum("count")\
.withColumnRenamed("sum(count)“,"dest_total")\
.sort(desc("dest_total"))\
.limit(5)\
.show() +-----------------+----------+

|DEST_COUNTRY_NAME|dest_total|
+-----------------+----------+
|    United States|    411352|
|           Canada|      8399|
|           Mexico|      7140|
|   United Kingdom|      2025|
|            Japan|      1548|
+-----------------+----------+
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Execution is Optimized (See Additional Slides)

 The specified chain of operations (transformations + 

action) is optimized before execution

 Operation „.explain()“ shows the physical plan

From Spark: The Definitive Guide, by Matei Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)

16

https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68276426


Creating DataFrames

A DataFrame can be created in multiple ways:

 Loading from text, csv, json, xml, parquet files

 We saw an example with schema inference

 By converting from „normal“ RDDs

 Importing from DBMS (Hive, Cassandra, ..)

 Creating a DataFrame on the fly by taking a set of 

rows and converting them to a DataFrame
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Creating DataFrames from Python Data
from pyspark.sql import Row
from pyspark.sql.types import StructField, StructType, StringType, LongType

# Specify schema manually
myManualSchema = StructType([
StructField("some", StringType(), True),
StructField("col", StringType(), True),
StructField("names", LongType(), False)

])

# Create a row and a DataFrame with it
myRow = Row("Hello", None, 1)
myDf = spark.createDataFrame(

[myRow], myManualSchema)
myDf.show()
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Creating DataFrames from RDDs
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// Read file with rows: <name, age>
filePath = ".../people.txt“
parts = sc.textFile(filePath).map(

lambda line: line.split(","))
// Each row should become a tuple (name, age)
peopleRDD = parts.map(lambda p: (p[0], p[1].strip()))

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("X").getOrCreate()

schema = StructType([

StructField ("name", StringType(), True), 

StructField ("age",  StringType(), True)

])

dfPeople = spark.createDataFrame(peopleRDD, schema)

print (dfPeople.take(5))



Reading DFs from Other Sources

filePath = ".../people.txt"
// Read from CSV (comma separated values) files
df_csv = spark.read.csv(filePath, schema = schema)
print (df_csv.take(5))

// Read from json – schema is inferred!
df_json = spark.read.json(".../people.json")
df_json.show()

# +----+-------+
# | age|   name|
# +----+-------+
# |null|Michael|
# |  30|   Andy|
# |  19| Justin|
# +----+-------+
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PySpark Operations in Cheat Sheets

 See "PySpark_SQL_Cheat_Sheet_Python.pdf“ in 

heibox, MMD-Materials\ Cheat_Sheets
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Typical DataFrame Tasks ... 

 Add rows or columns

 Remove rows or columns

 Transform a row into a column 

(or vice versa)

 Change the order of rows 

based on the values in cols

 We can translate all of these tasks into simple 

transformations

 The most common scenario is: take one column, 

change it row by row, and then return the results
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Examples of Complex DF Operations

Select only the "name" column

dfPeople.select("name").show()
# |   name|
# |Michael| …

Group by age and count per group

dfPeople.groupBy("age").count().show()
# | age|count|
# |  19|    1|
# |null|    1|
# |  30|    1|

Print schema

dfPeople.printSchema()
# root
# |-- age: string (nullable = true)
# |-- name: string (nullable = true)
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Standard DFs  Functions

There are many ready-to-use functions, similar to 

those in convensional SQL

From: Jeffrey Aven: Sams teach yourself Apache Spark in 24 hours, 2017 24



User Defined Functions (UDFs)
from pyspark.sql.functions import *
from pyspark.sql.types import *

df = sqlContext.read.parquet('.../stations.parquet')

lat2dir = udf(lambda x: 'N' if x>0 else 'S', StringType())
lon2dir = udf(lambda x: 'E' if x>0 else 'W', StringType())
df.select(df.lat,  lat2dir(df.lat).alias('latdir'),

df.lon, lon2dir(df.lon).alias('londir')).show()

From: Jeffrey Aven: Sams teach yourself Apache Spark in 24 hours, 2017 25

+----------+------+-----------+------+
|       lat|latdir|        lon|londir|
+----------+------+-----------+------+
| 37.329732|     N|-121.901782|     W|
| 37.330698|     N|-121.888979|     W|
| 37.333988|     N|-121.894902|     W|
|-37.331415|     S|   121.8932|     E|
| 37.336721|     N| 121.894074|     E|
+----------+------+-----------+------+



Spark SQL: Writing Queries in SQL

 In Spark 2.0 support for SQL and Hive was added

 See Sec. 10 of „Spark: The Definitive Guide...” 

 => You can register any DataFrame as a table or 

view (a temporary table) and query it using pure SQL

 There is no performance difference between writing SQL 

queries or writing DataFrame code 

 Spark implements a subset of ANSI SQL:2003

 Anecdote: Spark became so successful at replacing 

Hive, that even Facebook (Hive creator) uses it:
 “The Spark-based pipeline produced significant performance 

improvements (4.5–6x CPU, 3–4x resource reservation, and ~5x 

latency) compared with the old Hive-based pipeline, and it has 

been running in production for several months.” (Facebook blog 

post, link)
26
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Spark SQL: Example with flightData2015

 Make DataFrame into a table or view
flightData2015.createOrReplaceTempView("flight_data_2015")

 A new „global“ table "flight_data_2015“ is added to 

session data => you don‘t need to capture the output

 As before, let us find the top five destination countries

maxSql = spark.sql("""

SELECT DEST_COUNTRY_NAME, sum(count) as dest_total

FROM flight_data_2015

GROUP BY DEST_COUNTRY_NAME

ORDER BY dest_total DESC

LIMIT 5""")

maxSql.show()
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+-----------------+----------+
|DEST_COUNTRY_NAME|dest_total|
+-----------------+----------+
|    United States|    411352|
|           Canada|      8399|
|           Mexico|      7140|
|   United Kingdom|      2025|
|            Japan|      1548|
+-----------------+----------+



Spark SQL: Example with Dataset „people“

Standard DF API:

# Select people older than 25

dfPeople.filter(dfPeople['age']>25).show()

Same result with Spark SQL:

# Register the DataFrame as a SQL temporary view

dfPeople.createOrReplaceTempView("people")

df = spark.sql("SELECT * FROM people where age > 25")

df.show()
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Quiz on Dataframes  
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 Open the link Pingo <todo>

 Answer the questions (2 minutes)

 Mark true statements related to Spark Resilient 

Distributed Datasets (RDDs) or Spark DataFrames. 

1. RDDs allow specifying data types, DataFrames not

2. Querying or processing DataFrames via Spark SQL is as 

powerful and fast as via API (chains of method calls)

3. You can emulate RDD-pair transformations like 

reduceByKey via DataFrames and its API

4. RDDs are higher-level data structures and internally map 

to DataFrames
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Apache Spark: 

Machine Learning (ML) 

with Spark



Advanced Data Analytics …

 .. Are techniques for deriving insights and making 

predictions or recommendations based on data

Common tasks include:

 Supervised learning: classification and regression

 Goal: predict label/real value for data point based features

 Recommendation engines

 Goal: suggest products to users based on behavior

 Unsupervised learning: clustering, anomaly 

detection, topic modeling

 Goal: discover structure in the data

 Graph analytics: finding patterns in networks

31



MLlib: a Core Package of Spark

 MLlib is a package of Spark with APIs/routines for: 

 Gathering and cleaning data

 Feature engineering and feature selection

 Training and tuning large-scale un/supervised ML models

 Using such ML models in production

 MLlib consists of two packages

 pyspark.ml (or org.apache.spark.ml)

 Preferred higher level API, currently the “main” API (Spark 2.x)

 Uses DataFrames and provides ML pipelines 

 pyspark.mllib (or org.apache.spark.mllib)

 Lower-level package using RDDs

 Now in maintenance mode, no new features

32



Workflow for Obtaining ML Models in Spark

Fig. 24-2. from Spark: The Definitive Guide, by Matei
Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)
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ML Pipelines in Spark

 Spark’s ML Pipelines API (link) allow to set up a 

sequence of stages for

 Data cleaning, feature extraction, model training, model 

validation and tuning, model testing, .. 

 They make it easier to combine multiple algorithms 

into a single pipeline (workflow)

 The pipeline concept is mostly inspired by the scikit-

learn project (for Python)

 They use DataFrames (DF), i.e. essentially DB-like 

tables with columns of various types

 See previous lecture/slides
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https://spark.apache.org/docs/latest/ml-pipeline.html
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Essential Elements of the ML Pipelines API

 Transformer: an algorithm which can transform one 

DataFrame into another DataFrame

 E.g., an ML model transforms a DataFrame with features 

into a DataFrame with predictions

 Estimator: an algorithm which can be fit on a 

DataFrame to produce a Transformer

 E.g., a learning algorithm trains on a DataFrame and 

produces a model

35



Essential Elements of the ML Pipelines API

 Pipeline: an object which chains multiple 

Transformers and Estimators together to a workflow

 Parameter: a common API for specifying parameters 

of Transformers and Estimators
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Transformers: Details
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 An abstraction that includes feature transformers 
and learned models

 Transformers convert data in some way
 E.g. normalize a column; predict a label for each feature 

 They add more columns or change the DF values

 Call the method transform() to activate

Fig. 24-3. from Spark: The Definitive Guide, by Matei

Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)

https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68276426


Estimators: Details

38

 An Estimator abstracts the concept of a learning algorithm 

or any algorithm that fits or trains on data 

 Technically, an E. implements a method fit(), which 

accepts a DataFrame and produces a model (Transformer)

 E.g., a learning algorithm such as LogisticRegression is an 

Estimator, and calling fit() trains a LogisticRegressionModel, 

which is a Model and hence a Transformer

Fig. 25-2. from Spark: The Definitive Guide, by Matei

Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)

https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68276426


Pipelines as Sequences

 In ML it is common to run a sequence of algorithms 

to process and learn from data

 E.g., a simple text document processing workflow 

might include several stages:

 Split each document’s text into words

 Convert each word into a numerical feature vector

 Learn a prediction model using the feature vectors and 

labels

 MLlib represens this workflow as a Pipeline

 It consists of a sequence of PipelineStages

(Transformers and Estimators) to be run in a specific order

39



Pipelines vs. PipelineModels

40

 In an ML study, we typically have these subtasks:

 Training: build model(s) according to data  

 Test/prediction: apply models to new data  

 The ML Pipelines API supports both subtasks

 A complete “untrained” Pipeline pipe is an Estimator

 Training:

 We call pipe.fit()

 The result is an object model of 
type PipelineModel, which is a 
Transformer

 Test/prediction:

 Set test data as input to model

 Call model.transform() to perform 
predictions on test data

Pipeline

(Estimator)

PipelineModel

(Transformer)



Example Pipeline Usage: Training Time 
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 The Pipeline.fit() method is called on the original 

DataFrame with raw text documents and labels

 Recall: the complete pipeline is of type Estimator

 Pipeline calls the transform() methods of Tokenizer 

and HashingTF, then fit() method of Log. Regression

 After a Pipeline’s fit() method runs, it produces a 

PipelineModel, which is a Transformer (=> phase 2)

From: https://spark.apache.org/docs/latest/ml-pipeline.html

Estimator

Transformer



Example Pipeline Usage: Prediction Time 
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 The PipelineModel has the same number of stages as the 

original Pipeline, but all Estimators become Transformers!

 When the PipelineModel’s transform() method is called on 

a test/production dataset, the data are passed through the 

fitted (= trained) pipeline in order

 In particular, the LogististicRegressionModel performs 

classification (predictions) due to model trained in 1. phase

From: https://spark.apache.org/docs/latest/ml-pipeline.html

Transformer



Vectors

 We need some lower-level data types, esp. Vector

 To pass a set of features to a model, we need to do it 

as a vector that consists of Doubles

 Vectors can be either sparse (where most of the 

elements are zero) or dense (“normal”)

 Create sparse: specify an array of all the values

 Create dense: specify the total size and the indices and 

values of the non-zero elements

from pyspark.ml.linalg import Vectors

denseVec = Vectors.dense(1.0, 2.0, 3.0)
size = 3
idx = [1, 2] # indices of non-zero elements in vector
values = [2.0, 3.0]
sparseVec = Vectors.sparse(size, idx, values)
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Example: Pipeline (Training) (link)
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer

# Prepare training documents from a list of (id, text, label) 
tuples.
training = spark.createDataFrame([

(0, "a b c d e spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0)

], ["id", "text", "label"])

# Configure an ML pipeline, which consists of three stages: 
tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), 
outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

# Fit the pipeline to training documents.
model = pipeline.fit(training) 44

https://spark.apache.org/docs/latest/ml-pipeline.html


Example: Pipeline (Prediction)

# Prepare test docs (unlabeled (id, text) tuples)
test = spark.createDataFrame([

(4, "spark i j k"),
(5, "l m n"),
(6, "spark hadoop spark"),
(7, "apache hadoop")

], ["id", "text"])

# Make predictions on test docs, print cols of interest
prediction = model.transform(test)
selected = prediction.select("id", "text",

"probability", "prediction")
for row in selected.collect():

rid, text, prob, prediction = row
print("(%d, %s) --> prob=%s, prediction=%f" % 

(rid, text, str(prob), prediction))
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Implemented Functionality in MLlib /1 

MLlib provides a large variety of scalable functions:

 Feature Engineering

 Extraction: Extracting features from “raw” data

 Transformation: Scaling, converting, or modifying features

 Selection: Selecting a subset from a larger set of features

 Locality Sensitive Hashing (LSH)

 Classification

 Logistic regression, decision tree, random forest,

 Gradient-boosted trees, multilayer perceptron, linear SVM

 Regression

 (Generalized) linear regression, decision tree, random 

forest, .., survival regression, isotonic regression
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Implemented Functionality in MLlib /2

 Clustering

 K-means, Latent Dirichlet allocation (LDA), Bisecting k-

means, Gaussian Mixture Model (GMM)

 Collaborative filtering (recommender systems)

 Frequent Pattern Mining

 FP-Growth, PrefixSpan

 Model selection and hyperparameter tuning

 Model selection using Pipelines (CrossValidator and 

TrainValidationSplit)
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Overview Feature Engineering Functions
Feature Extractors

TF-IDF

Word2Vec

CountVectorizer

FeatureHasher

Feature Transformers

Tokenizer

StopWordsRemover

n-gram

Binarizer

PCA

PolynomialExpansion

Discrete Cosine Transform (DCT)

StringIndexer

IndexToString

OneHotEncoderEstimator

VectorIndexer

Interaction

Normalizer

StandardScaler

MinMaxScaler

MaxAbsScaler

Bucketizer

ElementwiseProduct

SQLTransformer

VectorAssembler

VectorSizeHint

QuantileDiscretizer

Imputer

Feature Selectors

VectorSlicer

RFormula

ChiSqSelector

Locality Sensitive Hashing

LSH Operations

LSH Algorithms

48
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Examples Feature Engineering Functions

 Extractor: Word2Vec

 Takes sequences of words and trains a Word2VecModel

 The model maps each word to a unique fixed-size vector

 Feature Transformer: QuantileDiscretizer

 Takes a column with continuous features and outputs a 

column with binned categorical features

 The number of bins is set by the numBuckets parameter

 Feature Selector: ChiSqSelector

 Uses the Chi-Squared test of independence to decide 

which features to choose

 It supports 5 selection methods: numTopFeatures, 

percentile, fpr, fdr, few; e.g.

 fpr chooses features whose p-values are below a threshold
49
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More on Feature Engineering with Spark

Spark: The Definitive Guide, by Matei Zaharia & Bill 

Chambers, O'Reilly Media, 2018 (link)

Chapter 25. Preprocessing and Feature 

Engineering

 “Any data scientist worth her salt knows that one of 

the biggest challenges (and time sinks) in advanced 

analytics is preprocessing. 

 It’s not that it’s particularly complicated 

programming, but rather that it requires deep 

knowledge of the data you are working with and an 

understanding of what your model needs in order to 

successfully leverage this data.”
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NLDSL

 A Visual Studio Code extension which gives you a 

Domain Specific Language (DSL) for Spark & 

Pandas

 DSL is expanded into final code during editing

 Try it out ☺

 https://pvs.ifi.uni-heidelberg.de/software/nldsl

 Download for Windows, Linux, or Mac
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Recommended Videos on Spark

 Introduction tutorials on Spark

 Parallel programming with Spark Presented by Matei

Zaharia UC Berkeley AmpLab 2013 

 https://www.youtube.com/watch?v=e-56inQL5hQ&t=30s

 Parallel Programming with Spark (Part 1 & 2) by Matei

Zaharia (2012)

 https://www.youtube.com/watch?v=7k4yDKBYOcw

 Coursera

 Big Data Analysis with Scala and Spark

 https://www.coursera.org/learn/scala-spark-big-data

 Enroll -> Audit, then for free!
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Reading Materials on Spark

 Free Materials:

 Spark Programming Guide

 https://spark.apache.org/docs/latest/rdd-programming-guide.html

 Apache Spark Tutorial: ML with PySpark

 https://goo.gl/u4RjeB

 Cheat Sheet PySpark-RDD Basics, https://goo.gl/UF5zVr

 Jacek Laskowski, Mastering Apache Spark 2, GitBook.com, 

https://goo.gl/yFYRYm

 Books

 Matthew Rathbone: 10+ Great Books for Apache Spark 

 https://blog.matthewrathbone.com/2017/01/13/spark-books.html
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The End
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Additional Slides





Software Components

 Spark runs as a library in your 

program
 Runs tasks locally / on cluster*

 Standalone, YARN, Mesos

 See Cluster Mode Overview*

 Accesses storage systems 

via Hadoop API

 Can use HBase, HDFS, S3, …

Your application

SparkContext

Local 
threads

Cluster 
manager

Worker

Spark 
executor

Worker

Spark 
executor

HDFS or other storage

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013

Driver

*=http://spark.apache.org/docs/latest/cluster-overview.html
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Components

sc = new SparkContext

f = sc.textFile(“…”)

f.filter(…)
.count()

...

Your program

Spark client
(app master) Spark worker

HDFS, HBase, …

Block 

manager

Task 

threads

RDD graph

Scheduler

Block tracker

Shuffle tracker

Cluster
manager

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013

For more info see video “Introduction to AmpLab Spark Internals” 
(https://www.youtube.com/watch?v=49Hr5xZyTEA) and read slides
http://files.meetup.com/3138542/dev-meetup-dec-2012.pptx

https://www.youtube.com/watch?v=49Hr5xZyTEA
http://files.meetup.com/3138542/dev-meetup-dec-2012.pptx


Example Job

sc = SparkContext (appName="PythonExample")

file = sc.textFile(“hdfs://...”)

errors = file.filter(lambda line:“ERROR” in line))

errors.cache()

errors.count()

RDDs

Action

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013 59



Operator DAG
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= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013

sc = new SparkContext

f = sc.textFile(“…”)

f.filter(…).count()

...

Your program

The operator DAG (Directed Acyclic Graph) captures 
RDD dependencies

Task = a “pipeline” of 
operations on a partition

Stage: explained later



Stages
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 A set of 

independent 

tasks, as large 

as possible

 Stage 

boundaries are 

only at input 

RDDs or “shuffle” 

operations (like 

groupBy*, join, 

…)

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= previously computed partition

Task

From: Introduction to Spark Internals, Matei Zaharia, 2012



Scheduling Process
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rdd1.join(rdd2)
.groupBy(…)
.filter(…)

RDD Objects

build operator DAG 

(DAG = Directed 
Acyclic Graph) 

DAGScheduler

split graph into 
stages of tasks 
(stages =“maximal” 
sets of 
independent tasks)

DAG

TaskScheduler

TaskSet

launch tasks via 
cluster manager

retry failed or 
straggling tasks

Cluster
manager

Worker

execute tasks

store and serve 
blocks

Block 
manager

Threads

Task

stage
failed

From: Introduction to Spark Internals, Matei Zaharia, Meetup Dec 2012



Dependency Types in DAG
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union

groupByKey

join with inputs not
co-partitioned

join with 
inputs co-

partitioned

map, filter

“Narrow” dependencies: “Wide” (shuffle) deps:

From: Introduction to Spark Internals, Matei Zaharia, Meetup Dec 2012



DAG Scheduler vs. Task Scheduler

 DAG Scheduler – “higher level”

 Builds stages of task objects (by code + preferred location)

 Submits them to TaskScheduler as ready

 Resubmits failed stages if outputs are lost

 TaskScheduler

 “Lower level” – similar to 

Hadoop master

 Given a set of tasks, runs it 

and reports results

 Exploits data locality

 Local / cluster 

implementation

DAGScheduler

split graph into 
stages of tasks

submit each 
stage as ready

DAG

TaskScheduler

TaskSet

launch tasks via 
cluster manager

retry failed or 
straggling tasks

Cluster
manager

stage
failed

From: Introduction to Spark Internals, Matei Zaharia, Meetup Dec 2012 64



Scheduler Optimizations
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 Pipelines narrow 

ops. within a 

stage

 Picks join 

algorithms based 

on partitioning 

(minimize 

shuffles)

 Reuses previously 

cached data
join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= previously computed partition

Task

In MapReduce, each M-R 
phase is “individual” 

=> Less optimization!  
From: Introduction to Spark Internals, Matei Zaharia, 2012



RDD Graph

 Partition: a subset of RDD, usually corresponding to 

a block of HDFS (or other file system)

 Task: a “pipeline” of operations on a single partition 

HadoopRDD

path = hdfs://...

FilteredRDD

func = _.contains(…)
shouldCache = true

file:

errors:

Partition-level view:Dataset-level view:

Task 1 Task 2 ... Task 4

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013 66



RDD Interface

 Set of partitions (“splits”)

 List of dependencies on parent RDDs

 Function to compute a partition given parents

 Optional preferred locations

 Optional partitioning info (Partitioner)

Captures all current Spark operations!

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013



Example: HadoopRDD

 partitions = one per HDFS block

 dependencies = none

 compute(partition) = read corresponding block

 preferredLocations(part) = HDFS block location

 partitioner = none

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013



Example: JoinedRDD

 partitions = one per reduce task

 dependencies = “shuffle” on each parent

 compute(partition) = read and join shuffled data

 preferredLocations(part) = none

 partitioner = HashPartitioner(numTasks)

Spark will now know 

this data is hashed!

From: Parallel Programming with Spark, Matei Zaharia, AmpCamp 2013
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Structured APIs in Spark: 

DataFrames vs. Datasets



Spark’s Ecosystem 

71From Spark: The Definitive Guide, by Matei Zaharia & Bill Chambers, O'Reilly Media, 2018 (link)

We know 

RDDs already

We saw DS 

already?

Today: MLlib

introduction

We know 

DFs already

https://katalog.ub.uni-heidelberg.de/cgi-bin/titel.cgi?katkey=68276426


Structured APIs in Spark

 Structured APIs allow manipulating all sorts of data, 

from unstructured (e.g. log files) to highly structured 

 There are three core types of them:

 DataFrames (seen before)

 SQL tables and views (seen before)

 Datasets

 Datasets are type-safe Structured APIs

 Think of them as essentially “typed” DataFrames

 Spark checks whether data types are valid during code 

compilation, before execution starts

 (!) Datasets are only available to Java Virtual Machine

(JVM)–based languages, i.e. Scala and Java

72



Datasets vs. DataFrames

 In reality, DataFrames are 

special cases of Datasets

 Spark 2.0 unified DFs and 

datasets 

 Major differences:

 For DFs, Spark only checks whether DF types line up to 

those specified in the schema at runtime

 For Datasets, this happens earlier, at compile time

Spark SQL DataFrame Dataset

Syntax errors Runtime Compile Time Compile Time

Analysis errors Runtime Runtime Compile Time
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DataFrame APIs Allow Faster Execution

74

 APIs for DFs/Datasets provide high-level operators like 

sum, count, avg, min, max etc. (seen for DFs)

 Spark translates these into highly-efficient code –

execution can be faster than for RDDs!

From: Databricks, 7 Steps 

for a Developer to Learn 

Apache Spark, 2017



APIs as a Domain Specific Language (DSL)

 You can regard DF/Datasets APIs as a special 

„programming language“: a Domain Specific Language

 Example (in Scala):

// dataset with field names fname, lname, age, weight

// access using object notation

val seniorDS = peopleDS.filter(p => p.age > 55)

// dataframe with columns fname, lname, age, weight

// access using col name notation

val seniorDF = peopleDF.where(peopleDF(“age”) > 55)

// Spark SQL code (equivalent)

val seniorDF = spark.sql("SELECT age from person where 
age > 35")

From: Databricks, 7 Steps for a Developer to Learn Apache Spark, 2017 75



More Resources on Structured APIs

 Jeffrey Aven: Sams teach yourself Apache Spark in 24 

hours, 2017, http://katalog.ub.uni-heidelberg.de/cgi-

bin/titel.cgi?katkey=68102164 (free from univ. domain!)

 Databricks, 7 Steps for a Developer to Learn Apache 

Spark, 2017, https://goo.gl/chn8GE

 Spark Documentation: Spark SQL, DataFrames and 

Datasets Guide, https://goo.gl/HuHNEq

 Ankit Gupta: Complete Guide on DataFrame Operations 

in PySpark, 2016, https://goo.gl/mrNL4i

 Michael Armbrust, Wenchen Fan, Reynold Xin and Matei 

Zaharia: Introducing Apache Spark Datasets, 2016, 

https://goo.gl/VLu9dn
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