
Lecture 3

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommender
systems

Association
Rules

Duplicate
document
detection

3

Programming in Spark & MapReduce

 Scholar X

▪ Buys Metallica CD

▪ Buys Megadeth CD

 Scholar Y

▪ Does search on Metallica

▪ Recommender system
suggests Megadeth
▪ From data about X

5

Faculty of
Math & CS

Faculty of
Physics

Items

Search Recommendations

Products, web sites,

blogs, news items, …

6

Examples:

 Value for users

▪ Find things that are interesting

▪ Narrow down the set of choices

▪ Discover new things …

 Value for providers

▪ Increase trust and customer loyalty

▪ Increase sales, click rates, conversion etc.

▪ Opportunities for promotion

7

 X = set of Customers
 S = set of Items

 Utility function u: X × S → R

▪ R = set of ratings

▪ R is a totally ordered set

▪ e.g., 0-5 stars, real number in [0,1]

8

9

Alice Bob Carol David

Star Wars 1 0.2

Matrix 0.5 0.3

Avatar 0.2 1

Pirates 0.4

users

m
o

vi
es

10

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

- estimate rating of movie 1 by user 5

users

it
em

s
(m

o
vi

es
)

Goal:

 (1) Gathering “known” ratings for matrix
▪ How to collect the data in the utility matrix

 (2) Extrapolate unknown ratings from the
known ones
▪ Mainly interested in what people like (high scores)

▪ Key problem: Utility matrix U is sparse
▪ Cold start: New items have no ratings / New users have no

history

 (3) Evaluating extrapolation methods
▪ How to measure success/performance of

recommendation methods

11

A. Collaborative filtering (CF)

▪ Two Versions: user-user and item-item

B. Content-based recommenders

▪ Difficult in practice due to manually drafted
features

C. Latent factor models (LF)

▪ Improves on B by finding latent features
automagically

12

Version: User-User

 Consider user x

 Find set N of other
users whose ratings
are “similar” to
x’s ratings

 Estimate x’s ratings
based on ratings
of users in N

14

x

N

 Let 𝑟𝑥 be the vector of user 𝑥’s ratings
 Let 𝑁 be the set of 𝑘 “neighbors” of 𝑥

▪ = users most similar to 𝑥 (by metric 𝑠𝑖𝑚(𝑥, 𝑦), later)

▪ … who have already rated item 𝑖

 The predicted rating of user 𝑥 for item 𝑖 is:

𝑟𝑥𝑖 =
1

𝑘
෍

𝑦∈𝑁

𝑟𝑦𝑖

15

Average rating of k
“neighbors” of x for item i

 Let 𝑟𝑥 be the vector of user 𝑥’s ratings
 Let 𝑁 be the set of 𝑘 “neighbors” of 𝑥

▪ =users most similar to 𝑥 (by 𝑠𝑖𝑚(𝑥, 𝑦))

▪ … who have already rated item 𝑖

 The predicted rating of user 𝑥 for item 𝑖 is:

𝑟𝑥𝑖 =
σ𝑦∈𝑁 𝑠𝑖𝑚(𝑥, 𝑦) ⋅ 𝑟𝑦𝑖
σ𝑦∈𝑁 |𝑠𝑖𝑚 𝑥, 𝑦 |

16

Improvement here: we scale the recommendations of other
user 𝑦 by similarity 𝑠𝑖𝑚(𝑥, 𝑦) of 𝑥 to this “neighbor” 𝑦

Note: Expression 𝑠𝑖𝑚 𝑥, 𝑦 for 𝑦 ∈ 𝑁 should be positive since 𝑦 and 𝑥 are by
definition similar; but for general case, use |𝑠𝑖𝑚(𝑥,𝑦)| in denominator!

Computing 𝑵 = the set of 𝑘 users most similar to 𝑥
▪ According to 𝑠𝑖𝑚(𝑥, 𝑦), 𝑦’s have already rated item 𝑖

 1. Find all users 𝑦 who have
already rated item 1

17

654321

5 ?311

452

21423

5424

24345

3316

users

= estimate rating of

movie 1 by user 5

it
e
m

s

Computing 𝑁 = the set of 𝑘 users most similar to 𝑥
▪ According to 𝑠𝑖𝑚(𝑥, 𝑦), 𝑦’s have already rated item 𝑖

 1. Find all users 𝑦 who have
already rated item 1
▪ Solution: 𝑦 ∈ {1, 3, 6}

 2. Compute 𝑠𝑖𝑚(𝑥, 𝑦) for users 𝑦
▪ Let 𝑠5,1 = 𝑠𝑖𝑚(5,1), 𝑠5,3 = …

18

654321

5 ?311

452

21423

5424

24345

3316

users

= estimate rating of

movie 1 by user 5

it
e
m

s

Computing 𝑁 = the set of 𝑘 users most similar to 𝑥
▪ According to 𝑠𝑖𝑚(𝑥, 𝑦), 𝑦’s have already rated item 𝑖

 1. Find all users who have already
rated item 1

 2. For such users 𝑦 (here 𝑦 ∈
{1, 3, 6}) compute 𝑠𝑖𝑚(𝑥, 𝑦)
▪ Let 𝑠5,1 = 𝑠𝑖𝑚(5,1), 𝑠5,3 = …

 3. Among {𝑠5,1, 𝑠5,3, 𝑠5,6}, find top 𝑘
values (say 𝑘=2)
▪ E.g. 𝑠5,3, 𝑠5,6 largest => 𝑁 = {3,6}

19

654321

5 ?311

452

21423

5424

24345

3316

users

= estimate rating of

movie 1 by user 5

it
e
m

s

 Let rz be the column of user z’s ratings:

▪ Turn stars to numbers, fill missing values with 0’s

▪ => We can consider 𝑟𝑥, 𝑟𝑦 as vectors

 Use Cosine similarity measure

▪ 𝑠𝑖𝑚(𝒙, 𝒚) = cos(𝒓𝒙, 𝒓𝒚) =
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

▪ cos(𝒓𝒙, 𝒓𝒚) is just the angle bw. 𝑟𝑥, 𝑟𝑦, from 1 (=similar) to -1

(“opposite”)
20

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as vectors, NaN’s -> 0’s:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}

 Cosine similarity measure

▪ 𝑠𝑖𝑚(𝒙, 𝒚) = cos(𝒓𝒙, 𝒓𝒚) =
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

 Problem 1: Missing ratings become low ratings!
▪ 0’s are interpreted as (very) low ratings

▪ Items not rated by a user are considered as disliked!

 Problem 2: Users have different bias
▪ I.e. some give higher ratings on average, others low

ratings on average

21

rx, ry as vectors:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}

22

 Solution for problems 1 & 2
▪ For P1, consider only parts of the vectors 𝑟𝑥, 𝑟𝑦
▪ Vector entries for items rated by both users 𝑥 and 𝑦

▪ For P2, normalize or center each vector: substract average user’s
rating

 => Use Pearson correlation coefficient on partial vectors
▪ Pearson CC is computed as cosine similarity between centered vectors

 Definition and formula
▪ 𝑺𝒙𝒚 = items rated by both users 𝑥 and 𝑦

▪ ҧr𝑥, ҧr𝑦,… = average ratings of users 𝑥, 𝑦, …

23

𝒔𝒊𝒎 𝒙, 𝒚 =
σ𝒔∈𝑺𝒙𝒚

𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

σ𝒔∈𝑺𝒙𝒚
𝒓𝒙𝒔 − 𝒓𝒙

𝟐 σ𝒔∈𝑺𝒙𝒚
𝒓𝒚𝒔 − 𝒓𝒚

𝟐

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

 For recommendations, we use only most similar
users, or “neighbors” N(𝑥) of 𝑥

 A. Set a threshold for user similarity
▪ If a user has higher similarity than a threshold, he/she

can be regarded as a “similar” user

 B. Focus on top 𝑘 similar users (kNN method)
▪ If a user ranks at the top 𝑘 similarity, he/she can be

regarded as a similar user
▪ 𝑘 is often set to between 50 ~ 200
▪ In worst cases, a system uses rating information of

users with low similarity

24

 The predicted rating for item 𝑖 and user 𝑥 is

𝑟𝑥𝑖 =
σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦) ⋅ 𝑟𝑦𝑖

σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦)

 But it is good consider the bias or baseline of
user 𝑥:

𝑟𝑥𝑖 = 𝒓𝒙 +
σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦) ⋅ (𝑟𝑦𝑖 − 𝒓𝒙)

σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦)

25

Version: Item-Item

 Lack of data: If users haven’t rate the same
items yet, user similarity cannot be computed

 Instability

▪ It is rare that two users rated the same item

▪ => User sim. drastically changes with few new ratings

▪ User preferences (user features) often change,
while item features do not often change

 Computational cost

▪ In general, #Users >> #ltems => high cost of finding
nearest neighbors (similar users)

27

 For item 𝑖, find similar items rated by user 𝑥

▪ Let 𝑁(𝑖; 𝑥) be the set of such items

▪ We can use similarity metrics 𝑠𝑖𝑚() as before

 Estimate rating of user 𝑥 for item 𝑖 based on
her/his previous ratings for the items in 𝑁(𝑖; 𝑥)

 The predicted rating of user 𝑥 for item 𝑖 is:

𝑟𝑥𝑖 =
σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗) ⋅ 𝑟𝑥𝑗

σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗)

28
rxj = rating of user x on item j

121110987654321

455311

3124452

534321423

245424

5224345

423316

users

it
e

m
s

- unknown rating - rating between 1 to 5

29

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

- estimate rating of movie 1 by user 5

30

it
e

m
s

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Neighbor selection:

Identify movies similar to

movie 1, rated by user 5

31

it
e

m
s

We use Pearson correlation as similarity:

1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

1.00

0.41

-0.10

-0.31

0.59

sim(1,m)

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

Compute similarity weights:

s1,3= 0.41, s1,6= 0.59

32

it
e

m
s

1.00

-

0.41

-0.10

-0.31

0.59

sim(1,m)

121110987654321

4552.6311

3124452

534321423

245424

5224345

423316

users

Predict by taking the weighted average:

𝒓𝟏 𝟓= (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6

33

it
e

m
s

𝑟𝑥𝑖 =
σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗) ⋅ 𝑟𝑥𝑗

σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗)

1.00

0.41

-0.10

-0.31

0.59

sim(1,m)

 Define similarity 𝑠𝑖𝑚(𝑖, 𝑗) of items 𝑖 and 𝑗
 Select 𝑘 nearest neighbors 𝑁(𝑖; 𝑥)

▪ Items most similar to 𝑖 that were rated by 𝑥

 Estimate rating 𝑟𝑥𝑖 as the weighted average:

𝑟𝑥𝑖 = 𝑏𝑥𝑖 +
σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖,𝑗)⋅(𝑟𝑥𝑗−𝑏𝑥𝑗)

σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖,𝑗)

34

baseline estimate for (x,i):
𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊

 μ = overall mean item rating
 bx = rating deviation of user x

= (avg. rating of user x) – μ
 bi = rating deviation of item i

baseline estimate for (x,j)

 + Works for any kind of item

▪ No feature selection needed
 - Cold Start:
▪ Need enough users in the system to find a match

 - Sparsity:
▪ The user/ratings matrix is sparse

▪ Hard to find users that have rated the same items
 - First rater:
▪ Cannot recommend an item that has not been

previously rated (e.g. new items, esoteric items)
 - Popularity bias:
▪ Cannot recommend items to someone with unique taste

▪ Tends to recommend popular items

35

Remarks & Practical Tips

37

 In practice, it has been observed that item-item often
works better than user-user

 Why? Items are simpler, users have multiple tastes

Alice Bob Carol David

Star
Wars

1 0.2

Matrix 0.5 0.3

Avatar 0.2 1

Pirates 0.4

 Implement two or more different
recommenders and combine predictions

▪ Perhaps using a linear model

 Add content-based methods to
collaborative filtering

▪ Item profiles for new item problem

▪ Demographics to deal with new user problem

38

1 3 4

3 5 5

4 5 5

3

3

2 2 2

5

2 1 1

3 3

1

movies

users

39

1 3 4

3 5 5

4 5 5

3

3

2 ? ?

?

2 1 ?

3 ?

1

Test Data Set

users

movies

40

 Expensive step is finding 𝒌 most similar
customers: 𝑂(|𝑋|)

▪ X … set of customers

 Too expensive to do at runtime
 But we could pre-compute for all customers

▪ Naïve pre-computation takes time 𝑂(𝑋 2)

 We will learn how to do this faster!

▪ Near-neighbor search in high dimensions via
Locality-Sensitive Hashing

▪ Other means: clustering, dimensionality reduction

41

 Leverage all the data

▪ Don’t try to reduce data size in an
effort to make fancy algorithms work

▪ Simple methods on large data do best

 Add more data

▪ e.g., add IMDB data on genres

 More data beats better algorithms
▪ http://anand.typepad.com/datawocky/2008/03/more-data-

usual.html

42

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

A Side-Note

 „Our“ formula for Pearson skips missing values
(NaN‘s) in the computation

▪ => We use only items in 𝑺𝒙𝒚 (= items rated by both users x
and y) in each of the 3 sums

▪ E.g. numerator: σ𝒔∈𝑺𝒙𝒚
𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

 Better: A. pre-process each vector as follows:

▪ 1. Normalize non-missing values in each vector
▪ I.e. compute mean over (only) non-missing values, and subtract
𝑚 from each non-missing value

▪ 2. Replace each missing value by 0

 … and B. use standard Pearson formula (no skipping)

44

 Example phase A:

▪ 1. Normalize non-missing values in each vector
▪ I.e. compute mean over (only) non-missing values, and subtract
𝑚 from each non-missing value

▪ 2. Replace each missing value by 0’s

 xr = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]

▪ 1a. Compute mean: 𝑚 = (1+3+5+5+4)/5 = 3.6

▪ 1b. Subtract mean 𝑚 from each non-missing value:
xr-m = [-2.6, nan, -.6, nan, nan, 1.4, nan, nan, 1.4, nan, .4, nan]

▪ 2. Replace NaN’s by 0’s:

 x = [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

45

 xr = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]

 x = [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

yr = [2, 4, nan, 1, 2, nan, 3, nan, 4, 3, 5, nan]

 y = [-1, 1, 0, -2, -1, 0, 0, 0, 1, 0, 2, 0]

▪ B. Compute „normal“ Pearson of x, y: 0.4140393356
 Why is the result same as using 𝑺𝒙𝒚 and “skipping”?

▪ If a value (rating) is missing, it becomes 0 after pre-
processing => same as “skipping” it in each sum

▪ E.g. numerator: σ𝒔∈𝑺𝒙𝒚
𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

▪ s ∉ Sxy => 𝒓𝒙𝒔 − 𝒓𝒙 = 𝟎 or 𝒓𝒚𝒔 − 𝒓𝒚 = 𝟎

▪ => No contribution to the sum, i.e. as if skipped!

46

from scipy import nan
import numpy as np
from scipy.stats import pearsonr

def normalize (input: list):
mean = np.nanmean(input)
return input - mean

def preprocess_vec (input: list):
"Normalize and remove NaN's"
return np.nan_to_num(normalize(input))

47

Rows (items) from slide "Item-Item CF (Set |N|=2)"
x is item 1, y is item 3
xraw = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]
x = preprocess_vec(xraw)
yraw = [2, 4, nan, 1, 2, nan, 3, nan, 4, 3, 5, nan]
y = preprocess_vec(yraw)

Correlation of x and y
corr_xy, p_value = pearsonr(x, y)
print (f"Pearson correlation of x and y is {corr_xy}")

=> Pearson correlation of x and y is 0.4140393356054126

48

 Main idea: Recommend to customer x items
similar to previous items rated highly by x

Example:
 Movie recommendations

▪ Recommend movies with same actor(s), genre,
director,…

 Websites, blogs, news

▪ Recommend other sites with “similar” content

50

likes

Item profiles

Red

Circles

Triangles

User profile

match

recommend
build

51

 For each item, create an item profile

 Profile is a set (vector) 𝑣 of features

▪ Movies: author, title, actor, director,…

▪ Text: Set of “important” words in document

 Binary encoding (0/1) is used frequently

▪ Each (famous) actor gets a fixed vector position k

▪ If present in the movie, 𝑣𝑘 is set to 1, else to 0

52

 Representing item profile – a “mixed” vector

53























































=







9.2

2.3

0

0

1

0

0

1

1

0

1

0

1i

Set of actors
(as 0/1 entries)

Director(s)
(as 0/1 entries)

Ratings from various
movie DBs (as numbers)

 Idea: average the profiles of all items rated by a user
 Weight each such item profile by the rating of this user

 Let use u give items 1, 2, …, n ratings r1, r2, …, rn

 User profile x = weighted average of rated item
profiles

x = (r1*i1 + r2*i2 + .. + rn*in)/n

54

Profiles of items 1, 2, .., n (those
rated by user u) - vectors

Weights = ratings

 Items are movies, only features are “actors”

▪ Item profile has 2 components (for actor A and actor B)

 User ratings are 1 to 5 stars (per movie)
 User watched 5 movies

▪ Actor A – movies got 3 and 5 stars (movies 1 & 2)

▪ Actor B – movies got 1, 2 and 4 stars (movies 3, 4, 5)

 Ratings are r1=3, r2=5, r3=1, r4=2, r5=4
 Item profiles are as above

55









=








=








=








=








=

1

0
,

1

0
,

1

0
,

0

1
,

0

1
54321 iiiii

actor A present

actor B present

 The user profile becomes:

56









=








+








+








+








+









5/7

5/8
5/)

1

0
4

1

0
2

1

0
1

0

1
5

0

1
3(

=++++ 5/)(5544332211 iririririr

Such simple user profiles can exhibit low quality
(esp. if a user rated only few items) =>

See additional slides for problems & solutions:
Slides from “Problems with Simple User Profiles”

 To compute similarity of user profile and item
profile, use a prediction heuristic:

▪ Given user profile x and item profile i, estimate

𝒖(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙·𝒊

| 𝒙 |⋅| 𝒊 |

57

x

i

 In content-based recommendation, we represented each
item and each user as a vector in a k-dimensional space

 => Item i close to a user x gets a high recommendation rating

58

Geared
towards
females

Geared
towards
males

Serious

Funny

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence
Day

Amadeus
The Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

k = 2:
dim1 = ser. vs. funny
dim2 = fem. vs. male

 We construct a vector 𝒊 for each item (“item
profile”) and a vector 𝒙 (of size 𝑠) for each user

▪ Item profile 𝒊: “natural” attributes of an item

▪ User vector 𝒙: combination of item profiles rated by this
user (“synthetic” profile)

 Prediction heuristic:

▪ Given a user vector x and item vector 𝒊, estimate similarity

𝒖(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙 · 𝒊

| 𝒙 | ⋅ | 𝒊 |

▪ For a user with vector 𝒙, recommend by various criteria:
▪ E.g. all items with 𝑢 𝒙, 𝒊 > threshold

▪ Rank items by 𝑢 𝒙, 𝒊 , recommend top 𝑘 (e.g. 𝑘=5)

59

x

i

 +: No need for data on other users

▪ No cold-start or sparsity problems

 +: Able to recommend to users with
unique tastes

 +: Able to recommend new & unpopular items

▪ No first-rater problem

 +: Able to provide explanations

▪ Can provide explanations of recommended items by
listing content-features that caused an item to be
recommended

60

 –: Finding the appropriate features is hard

▪ E.g., images, movies, music

 –: Recommendations for new users

▪ How to build a user profile?

 –: Overspecialization

▪ Never recommends items outside user’s
content profile

▪ People might have multiple interests

▪ Unable to exploit quality judgments of other users

61

Questions?

Overview

 Shelf space is a scarce commodity for traditional
retailers
▪ Also: TV networks, movie theaters,…

 Web enables near-zero-cost dissemination
of information about products
▪ From scarcity to abundance

 More choice necessitates better filters
▪ Recommendation engines

▪ How Into Thin Air made Touching the Void
a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

64

http://www.wired.com/wired/archive/12.10/tail.html

65

Po
p

u
la

ri
ty

 (
#

p
u

rc
h

as
es

 p
er

 w
ee

k)

Items ranked by popularity

Retail
and
online

Only
online

66

Po
p

u
la

ri
ty

 (
#

p
u

rc
h

as
es

 p
er

 w
ee

k)

Items ranked by popularity

Retail
and
online

Only
online

 Explicit

▪ Ask people to rate items

▪ Doesn’t work well in practice – people
can’t be bothered

 Implicit

▪ Learn ratings from user actions

▪ E.g., purchase implies high rating

▪ What about low ratings?

67

Collaborative Filtering
Details on Similarity and Evaluation

 The Jaccard similarity of two sets is the size of their
intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

 Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

 For measuring similarity of
users, we consider only sets of
items for which users voted

 Problem? Values of ratings are
ignored!

69

3 in intersection

8 in union

Jaccard similarity = 3/8

Jaccard distance = 5/8

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as sets:

rx = {1, 4, 5}

ry = {1, 3, 4}

 Intuitively we want: 𝑠𝑖𝑚(𝑨,𝑩) > 𝑠𝑖𝑚(𝑨, 𝑪)
▪ Jaccard similarity: 1/5 < 2/4 => bad

▪ Cosine similarity: 0.386 > 0.322 => not good
 Solution: subtract the (row) mean

70

𝑠𝑖𝑚 𝑨,𝑩 vs. A,C:
0.092 > -0.559

Notice: cos similarity

is = correlation

when data is

centered at 0!

=> 𝑠𝑖𝑚(𝒙, 𝒚) =
σ𝒊 𝒓𝒙𝒊⋅𝒓𝒚𝒊

σ𝒊 𝒓𝒙𝒊
𝟐 ⋅ σ𝒊 𝒓𝒚𝒊

𝟐

How to compare predictions with known ratings?

 Root-mean-square error (RMSE), details: link

▪
1

𝑁
σ𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖

∗ 2

▪ where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊
∗ is the true rating of x on i, and N is

the number of ratings (= number of used (x,i) combinations)

 0/1 model
▪ Coverage: Number of items/users for which system can make

predictions

▪ Precision: Accuracy of predictions

▪ Receiver operating characteristic (ROC): Tradeoff curve
between false positives and false negatives

71

https://www.kaggle.com/wiki/RootMeanSquaredError

Content-based
Recommender Systems

 The user profile becomes:

 Problem 1: user likes actor A more than actor B, but
this shows only weakly in his profile!

 Problem 2: with more ratings, each component
becomes smaller (as n gets larger)

▪ Because components with value 0 disturb the average, but
should be treated as “don’t care about corresp. rating”

73









=








+








+








+








+









5/7

5/8
5/)

1

0
4

1

0
2

1

0
1

0

1
5

0

1
3(

=++++ 5/)(5544332211 iririririr

 Solution for 1: Normalize ratings by subtracting
user’s mean rating (which is 3 = (3+5+1+2+4)/5)

▪ Normalized ratings for actor A movies => 0, +2

▪ Normalized ratings for actor A movies => -2, -1, +1

 Then the user profile is:

▪ With r1=0, r2=+2, r3=-2, r4=-1, r5=+1

74










−
=








+








−








−








+









5/2

5/2
5/)

1

0
1

1

0
1

1

0
2

0

1
2

0

1
0(

Now better: clear distinction
for actor A and actor B

 Essence of problem 2: a 0 in an item’s component
(=attribute) k should mean “don’t care”, but now
mean “one more neutral rating for attribute k”

 => Use “individual” n for each vector component

▪ For actor A: nA =2, for actor B: nB = 3

75










−
=








+








−








−








+









5/2

5/2
5/)

1

0
1

1

0
1

1

0
2

0

1
2

0

1
0(

Only the ratings for these 3 items
should be counted for actor B

Only ratings for these 2 items should be counted for actor A

 => Use “individual” n for each vector component

▪ For actor A: nA =2, for actor B: nB = 3

▪ Recall: Normalized ratings are r1=0, r2=+2, r3=-2, r4=-1, r5=+1

 Then the user profile becomes:

76

=







+








+








+








+









bbb

aa

nrnrnr

nrnr

/

0

/

0

/

0

0

/

0

/

543

21










−
=








+









−
+









−
+








+









3/2

1

3/1

0

3/1

0

3/2

0

0

2/2

0

2/0

 How to pick important text features?
 Usual heuristic from text mining is TF-IDF

(Term-frequency * Inverse-Doc-Frequency)

▪ Term == Feature

▪ Doc(ument) == Item

 Now popular: word embeddings like word2vec

▪ Each word is represented as a (sub)vector

▪ Such vectors represent typical contexts (other
words) in which this one occur

▪ This distributed representation is learned from data

77

https://en.wikipedia.org/wiki/Word_embedding

 For term = 𝑖 and doc = 𝑗, the TF-IDF score 𝒘𝒊𝒋 is:
𝒘𝒊𝒋 = 𝑻𝑭𝒊𝒋 ∗ 𝑰𝑫𝑭𝒊

TF (term frequency):
▪ Let 𝒇𝒊𝒋 be frequency of term 𝒊 in document 𝒋

▪ Then:

IDF (inverse document frequency (of a term)):
▪ Let 𝑵 = total number of docs, 𝒏𝒊 = number of docs that

mention term 𝒊

▪ Then:

78

Note: we normalize TF

to discount for “longer” docs

