Mining Massive Datasets

Lecture 3

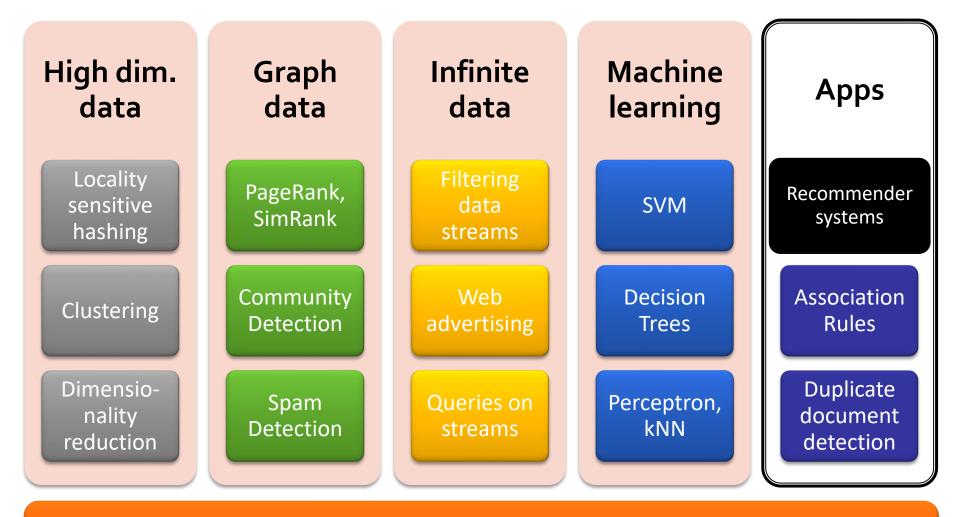
Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: <u>http://www.mmds.org</u>.

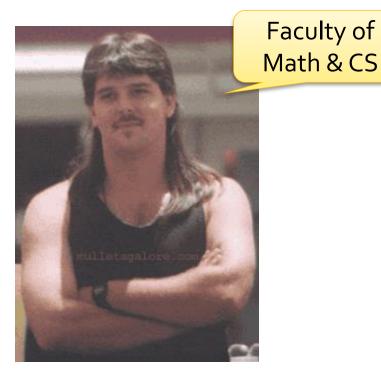
Current Topic



Programming in Spark & MapReduce

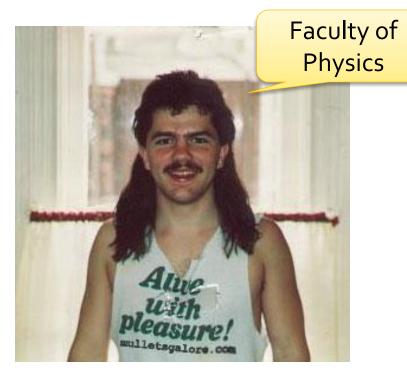
Recommender Systems: Motivation and Overview

Recommender Systems - Example



Scholar X

- Buys Metallica CD
- Buys Megadeth CD



Scholar Y

- Does search on Metallica
- Recommender system suggests Megadeth
 - From data about X

Recommender Systems

Why using Recommender Systems?

Value for users

- Find things that are interesting
- Narrow down the set of choices
- Discover new things ...
- Value for providers
 - Increase trust and customer loyalty
 - Increase sales, click rates, conversion etc.
 - Opportunities for promotion

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - R = set of ratings
 - **R** is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

users

	Alice	Bob	Carol	David
Star Wars	1		0.2	
Matrix		0.5		0.3
Avatar	0.2		1	
Pirates				0.4

Utility Matrix

Goal:

 - estimate rating of movie 1 by user 5

 USERS

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 1
 3
 ?
 5
 5
 4
 5
 4

													_
items (movies)	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
	3	2	4		1	2		3		4	3	5	
	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in what people like (high scores)
 - Key problem: Utility matrix U is sparse
 - Cold start: New items have no ratings / New users have no history

(3) Evaluating extrapolation methods

 How to measure success/performance of recommendation methods

Overview of the Approaches

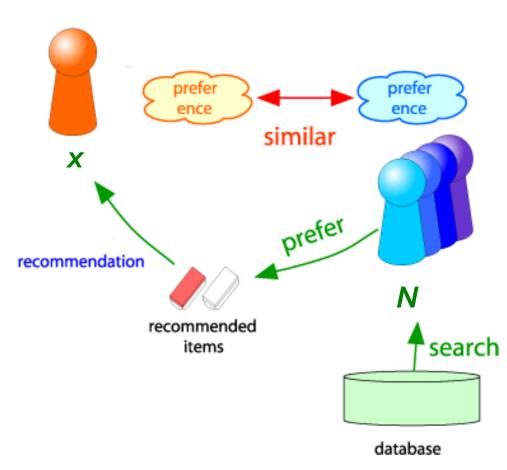
- A. Collaborative filtering (CF)
 - Two Versions: user-user and item-item
- B. Content-based recommenders
 - Difficult in practice due to manually drafted features
- C. Latent factor models (LF)
 - Improves on B by finding latent features automagically

A1. Collaborative Filtering

Version: User-User

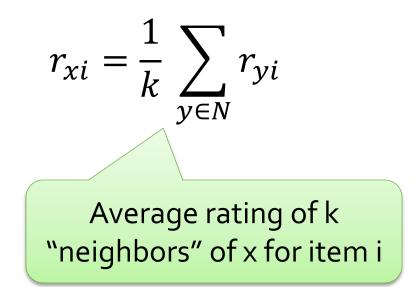
User-User Collaborative Filtering

- Consider user x
- Find set N of <u>other</u>
 <u>users</u> whose ratings are "similar" to
 x's ratings
- Estimate x's ratings based on ratings of users in N



Algorithm for User-User CF

- Let r_x be the vector of user x's ratings
- Let N be the set of k "neighbors" of x
 - = users most similar to x (by metric sim(x, y), later)
 - ... who have <u>already</u> rated item i
- The predicted rating of user x for item i is:



Rating Predictions - Improved

- Let r_x be the vector of user x's ratings
- Let N be the set of k "neighbors" of x
 - = users most similar to x (by sim(x, y))
 - ... who have already rated item i
- The predicted rating of user x for item i is:

$$r_{xi} = \frac{\sum_{y \in N} sim(x, y) \cdot r_{yi}}{\sum_{y \in N} |sim(x, y)|}$$

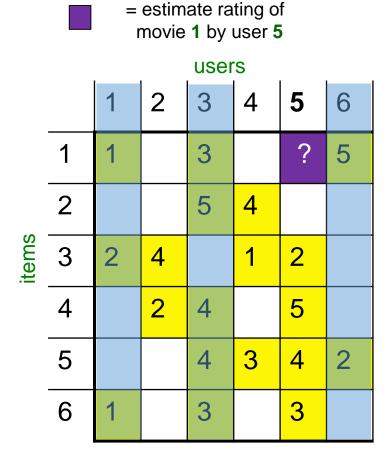
Improvement here: we scale the recommendations of other user y by similarity sim(x, y) of x to this "neighbor" y

Note: Expression sim(x, y) for $y \in N$ should be positive since y and x are by definition similar; but for general case, use |sim(x, y)| in denominator!

Example: User-User CF

Computing N = the set of k users most similar to x

According to sim(x, y), y's have already rated item i

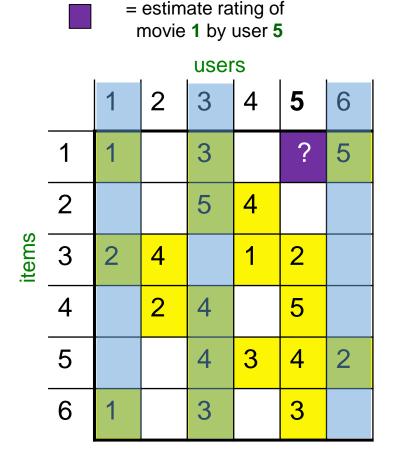


 1. Find all users y who have already rated item 1

Example: User-User CF

Computing N = the set of k users most similar to x

According to sim(x, y), y's have already rated item i



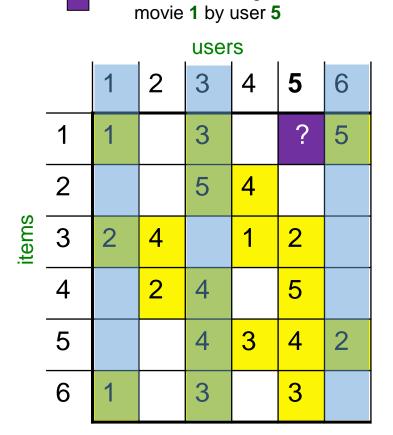
- 1. Find all users y who have already rated item 1
 - Solution: $y \in \{1, 3, 6\}$
- 2. Compute sim(x, y) for users y

• Let
$$s_{5,1} = sim(5,1), s_{5,3} = ...$$

Example: User-User CF

Computing N = the set of k users most similar to x

According to sim(x, y), y's have already rated item i



= estimate rating of

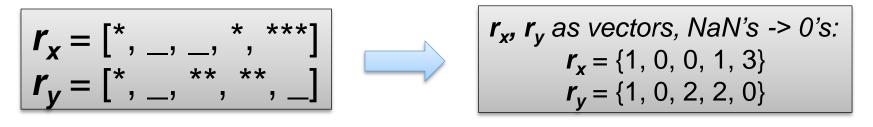
- 1. Find all users who have already rated item 1
- 2. For such users y (here $y \in \{1, 3, 6\}$) compute sim(x, y)

• Let
$$s_{5,1} = sim(5,1), s_{5,3} = ...$$

- 3. Among {s_{5,1}, s_{5,3}, s_{5,6}}, find top k values (say k=2)
 - E.g. $s_{5,3}$, $s_{5,6}$ largest => $N = \{3,6\}$

Finding "Similar" Users by Cosine

Let r_z be the column of user z's ratings:



- Turn stars to numbers, fill missing values with 0's
- => We can consider r_x , r_y as vectors
- Use Cosine similarity measure

•
$$sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$$

 cos(r_x, r_y) is just the angle bw. r_x, r_y, from 1 (=similar) to -1 ("opposite")

Problems with Cosine

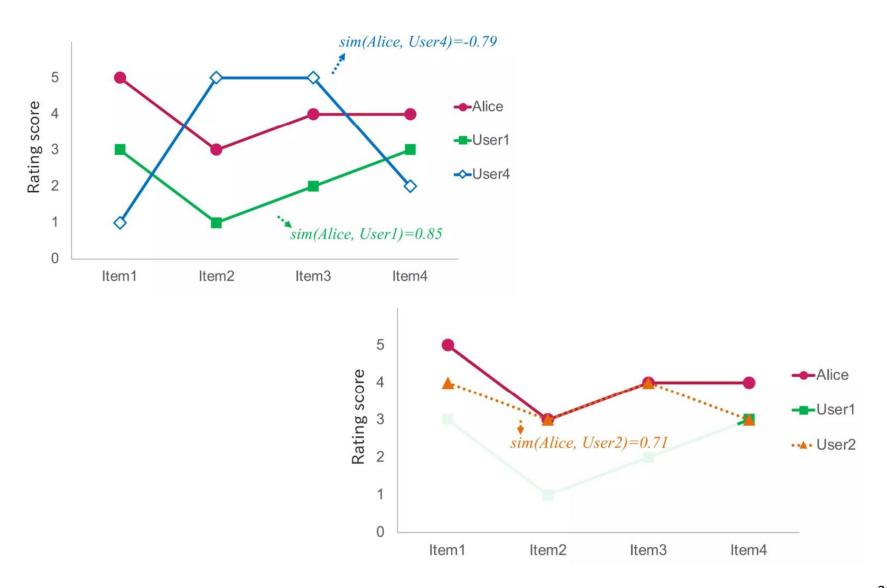
Cosine similarity measure

•
$$sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||}$$

$$r_x, r_y$$
 as vectors:
 $r_x = \{1, 0, 0, 1, 3\}$
 $r_y = \{1, 0, 2, 2, 0\}$

- Problem 1: Missing ratings become low ratings!
 - O's are interpreted as (very) low ratings
 - Items not rated by a user are considered as <u>disliked</u>!
- Problem 2: Users have different bias
 - I.e. some give higher ratings on average, others low ratings on average

Example: User Bias vs. Similarity



From Cosine to Pearson

- Solution for problems 1 & 2
 - For P1, consider only parts of the vectors r_x , r_y
 - Vector entries for items rated by <u>both</u> users x and y
 - For P2, normalize or center each vector: substract average user's rating
- = > Use Pearson correlation coefficient on partial vectors
 - Pearson CC is computed as cosine similarity between <u>centered</u> vectors
- Definition and formula
 - S_{xy} = items rated by both users x and y
 - $\overline{\mathbf{r}}_x$, $\overline{\mathbf{r}}_y$,... = average ratings of users x, y, ...

$$sim(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Computing Most Similar Users

- For recommendations, we use only most similar users, or "neighbors" N(x) of x
- A. Set a threshold for user similarity
 - If a user has higher similarity than a threshold, he/she can be regarded as a "similar" user
- B. Focus on top k similar users (kNN method)
 - If a user ranks at the top k similarity, he/she can be regarded as a similar user
 - k is often set to between 50 ~ 200
 - In worst cases, a system uses rating information of users with low similarity

Computing Predictions

- The predicted rating for item *i* and user *x* is $r_{xi} = \frac{\sum_{y \in N(x)} sim(x, y) \cdot r_{yi}}{\sum_{y \in N(x)} sim(x, y)}$
- But it is good consider the bias or baseline of user x:

$$r_{xi} = \overline{r_x} + \frac{\sum_{y \in N(x)} sim(x, y) \cdot (r_{yi} - \overline{r_x})}{\sum_{y \in N(x)} sim(x, y)}$$

A2. Collaborative Filtering

Version: Item-Item

Problems with User-Based CF

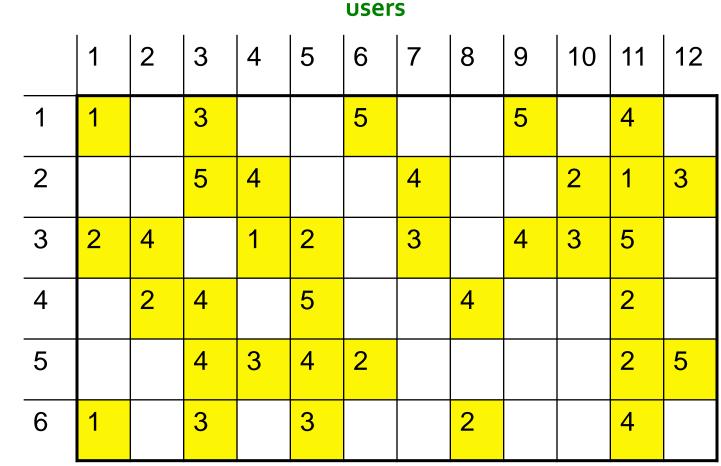
- Lack of data: If users haven't rate the same items yet, user similarity cannot be computed
 Instability
 - It is rare that two users rated the same item
 - = > User sim. drastically changes with few new ratings
 - User preferences (user features) often change, while item features do not often change
- Computational cost
 - In general, #Users >> #Items => high cost of finding nearest neighbors (similar users)

Item-Item Collaborative Filtering

- For item *i*, find similar items rated by user *x*
 - Let N(i; x) be the set of such items
 - We can use similarity metrics sim() as before
- Estimate rating of user x for item i based on her/his previous ratings for the items in N(i; x)
- The predicted rating of user x for item i is:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} sim(i,j) \cdot r_{xj}}{\sum_{j \in N(i;x)} sim(i,j)}$$

Example: Item-Item CF



items

- unknown rating

- rating between 1 to 5

Item-Item CF

- estimate rating of movie 1 by user 5

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

items

Item-Item CF (Set |N|=2)

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

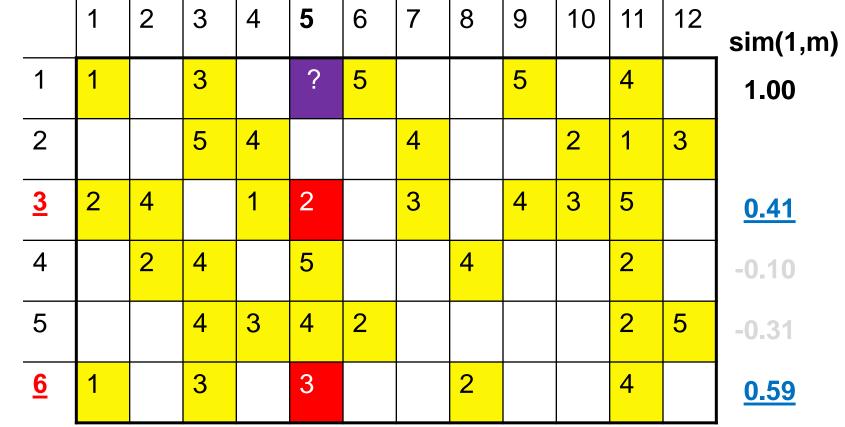
We use Pearson correlation as similarity:

 Subtract mean rating *m_i* from each movie *i m₁* = (1+3+5+5+4)/5 = 3.6 row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

31

2) Compute cosine similarities between rows

users



items

Item-Item CF (|N|=2)

Compute similarity weights:

 $s_{1,3} = 0.41, s_{1,6} = 0.59$

users

	1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
1	1		3		?	5			5		4		1.00
2			5	4			4			2	1	3	_
<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
<u>6</u>	1		3		3			2			4		<u>0.59</u>

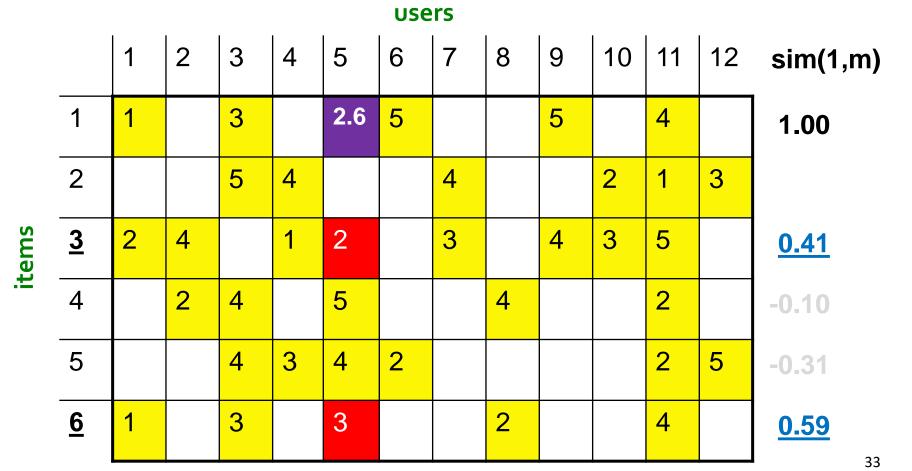
items

Item-Item CF (|N|=2)

$$r_{xi} = \frac{\sum_{j \in N(i;x)} sim(i,j) \cdot r_{xj}}{\sum_{j \in N(i;x)} sim(i,j)}$$

Predict by taking the weighted average:

 $r_{15} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$



CF: Using Baseline Estimates

- Define similarity sim(i, j) of items i and j
- Select k nearest neighbors N(i; x)

base

- Items most similar to i that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} sim(i,j) \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} sim(i,j)}$$
baseline estimate for (x,i):

$$b_{xi} = \mu + b_x + b_i$$

$$\mu = \text{overall mean item rating}$$

$$b_x = rating \text{ deviation of user } x$$

$$= (avg. rating of user x) - \mu$$

$$b_x = rating \text{ deviation of item } i$$

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

First rater:

- Cannot recommend an item that has not been previously rated (e.g. new items, esoteric items)
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Collaborative Filtering

Remarks & Practical Tips

Item-Item vs. User-User

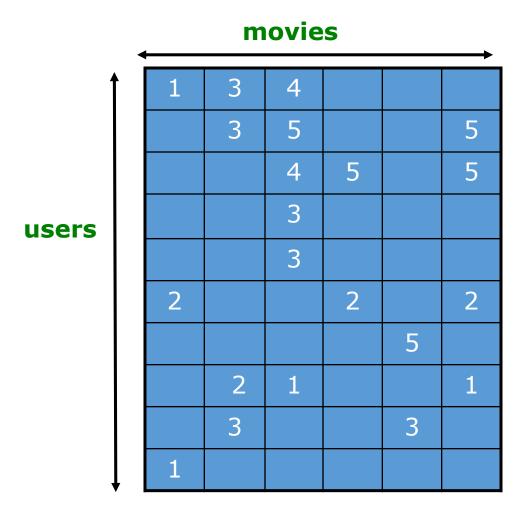
	Alice	Bob	Carol	David
Star Wars	1		0.2	
Matrix		0.5		0.3
Avatar	0.2		1	
Pirates				0.4

- In practice, it has been observed that item-item often works better than user-user
- Why? Items are simpler, users have multiple tastes

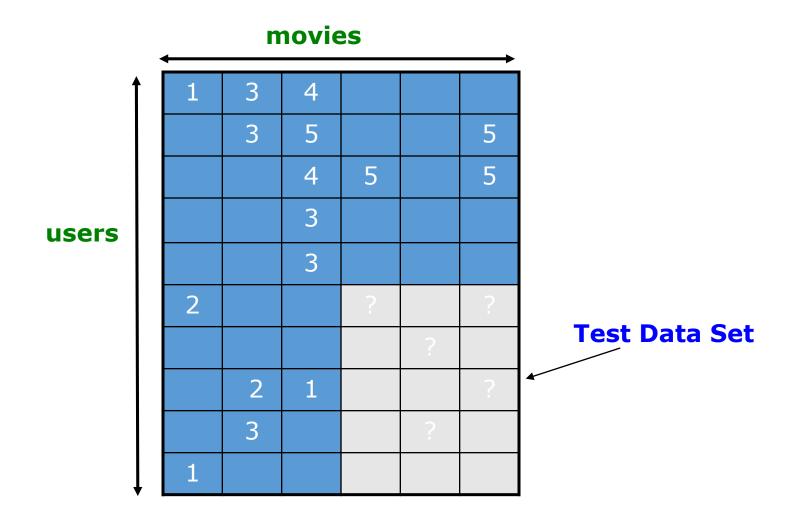
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Evaluation



Evaluation



Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
 - X ... set of customers
- Too expensive to do at runtime
- But we could pre-compute for all customers
 - Naïve pre-computation takes time $O(|X|^2)$
- We will learn how to do this faster!
 - Near-neighbor search in high dimensions via Locality-Sensitive Hashing
 - Other means: clustering, dimensionality reduction

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

Add more data

e.g., add IMDB data on genres

More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-datausual.html

Computing Pearson Efficiently

A Side-Note

Computing Pearson Efficiently

- "Our" formula for Pearson <u>skips</u> missing values (NaN's) in the computation
 - => We use only items in S_{xy} (= items rated by both users x and y) in each of the 3 sums
 - E.g. numerator: $\sum_{s \in S_{xy}} (r_{xs} \overline{r_x}) (r_{ys} \overline{r_y})$
- Better: A. pre-process each vector as follows:
 - 1. Normalize <u>non-missing</u> values in each vector
 - I.e. compute mean over (only) non-missing values, and subtract
 m from each non-missing value
 - 2. Replace each <u>missing</u> value by 0
- ... and B. use standard Pearson formula (no skipping)

Computing Pearson - Example

• Example phase A:

- 1. Normalize <u>non-missing</u> values in each vector
 - I.e. compute mean over (only) non-missing values, and subtract
 m from each non-missing value
- 2. Replace each <u>missing</u> value by 0's

xr = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]

- 1a. Compute mean: m = (1+3+5+5+4)/5 = 3.6
- Ib. Subtract mean *m* from each non-missing value: xr-m = [-2.6, nan, -.6, nan, nan, 1.4, nan, nan, 1.4, nan, .4, nan]
- 2. Replace NaN's by 0's:

⇒ x = [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

Computing Pearson - Example

- xr = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]
 ⇒ x = [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
 yr = [2, 4, nan, 1, 2, nan, 3, nan, 4, 3, 5, nan]
 ⇒ y = [-1, 1, 0, -2, -1, 0, 0, 0, 1, 0, 2, 0]
- B. Compute "normal" Pearson of x, y: 0.4140393356
- Why is the result same as using S_{xy} and "skipping"?
 - If a value (rating) is missing, it becomes 0 after preprocessing => same as "skipping" it in each sum
 - E.g. numerator: $\sum_{s \in S_{xy}} (r_{xs} \overline{r_x}) (r_{ys} \overline{r_y})$

•
$$\mathbf{s} \notin \mathbf{S}_{\mathbf{xy}} \Rightarrow (r_{xs} - \overline{r_x}) = \mathbf{0} \text{ or } (r_{ys} - \overline{r_y}) = \mathbf{0}$$

= > No contribution to the sum, i.e. as if skipped!

Computing Pearson - Code

from scipy import nan import numpy as np from scipy.stats import pearsonr

def normalize (input: list):
 mean = np.nanmean(input)
 return input - mean

def preprocess_vec (input: list):
 "Normalize and remove NaN's"
 return np.nan_to_num(normalize(input))

Computing Pearson - Code

Rows (items) from slide "Item-Item CF (Set |N|=2)"
x is item 1, y is item 3
xraw = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]
x = preprocess_vec(xraw)
yraw = [2, 4, nan, 1, 2, nan, 3, nan, 4, 3, 5, nan]
y = preprocess_vec(yraw)

Correlation of x and y
corr_xy, p_value = pearsonr(x, y)
print (f"Pearson correlation of x and y is {corr_xy}")

=> Pearson correlation of x and y is 0.4140393356054126

B. Content-based Recommender Systems

Content-based Recommendations

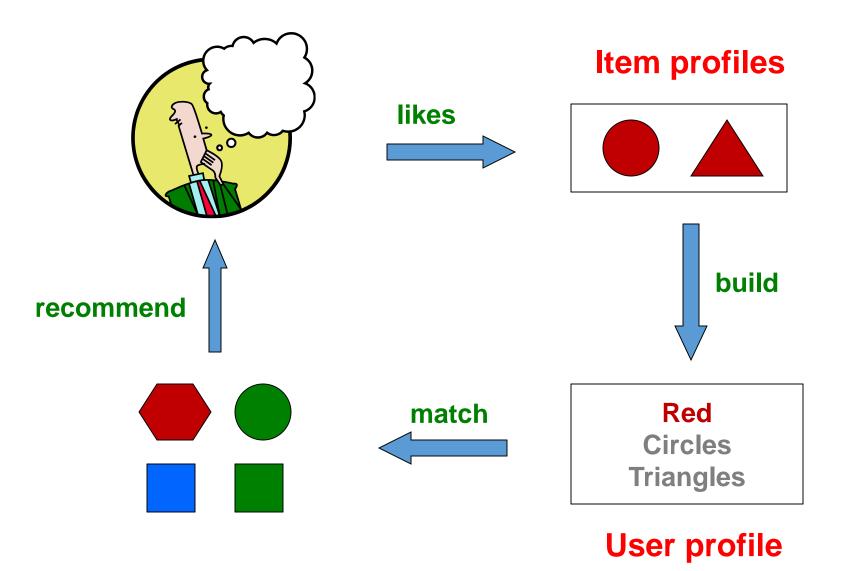
Main idea: Recommend to customer x items similar to previous items rated highly by x

Example:

Movie recommendations

- Recommend movies with same actor(s), genre, director,...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

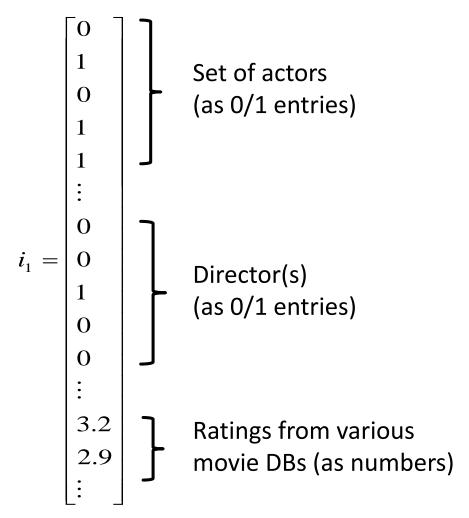


Item Profiles

- For each item, create an item profile
- Profile is a set (vector) v of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- Binary encoding (0/1) is used frequently
 - Each (famous) actor gets a fixed vector position k
 - If present in the movie, v_k is set to 1, else to 0

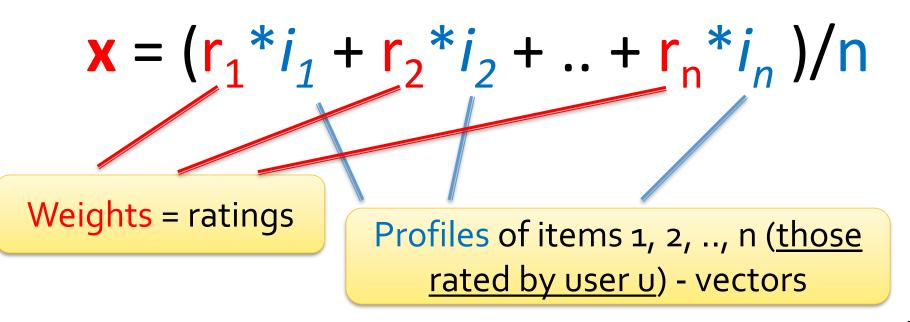
Example: Items are Movies

Representing item profile – a "mixed" vector



User Profiles – A Simple Approach

- Idea: <u>average</u> the profiles of all items rated by a user
 - Weight each such item profile by the rating of this user
- Let use u give items 1, 2, ..., n ratings r₁, r₂, ..., r_n
- User profile x = weighted average of rated item profiles



Example: Star-Based Ratings

$$i_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ i_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ i_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ i_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ i_5 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \longleftarrow \text{ actor A present}$$

- Items are movies, only features are "actors"
 - Item profile has 2 components (for actor A and actor B)
- User ratings are 1 to 5 stars (per movie)
- User watched 5 movies
 - Actor A movies got 3 and 5 stars (movies 1 & 2)
 - Actor B movies got 1, 2 and 4 stars (movies 3, 4, 5)
- Ratings are r₁=3, r₂=5, r₃=1, r₄=2, r₅=4
- Item profiles are as above

Example: Star-Based Ratings

The user profile becomes:

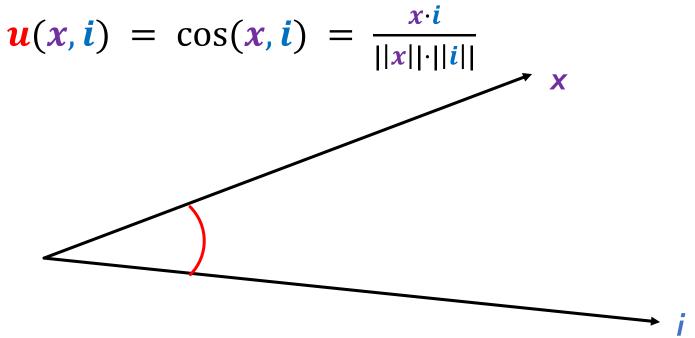
 $(r_1i_1 + r_2i_2 + r_3i_3 + r_4i_4 + r_5i_5)/5 =$

$$(3\begin{bmatrix}1\\0\end{bmatrix}+5\begin{bmatrix}1\\0\end{bmatrix}+1\begin{bmatrix}0\\1\end{bmatrix}+2\begin{bmatrix}0\\1\end{bmatrix}+4\begin{bmatrix}0\\1\end{bmatrix})/5 = \begin{bmatrix}8/5\\7/5\end{bmatrix}$$

Such simple user profiles can exhibit <u>low quality</u> (esp. if a user rated only few items) => See additional slides for problems & solutions: Slides from "Problems with Simple User Profiles"

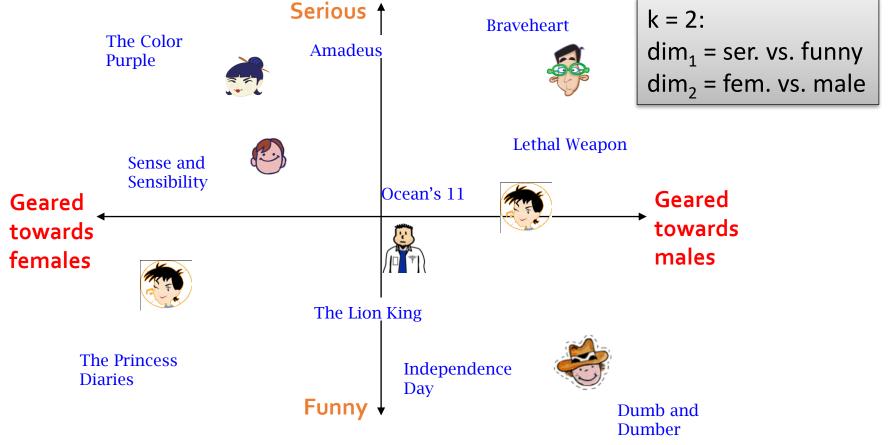
Matching User and Item Profiles

- To compute similarity of user profile and item profile, use a prediction heuristic:
 - Given user profile x and item profile i, estimate



Content-Based R.: Interpretation

- In content-based recommendation, we represented each item and each user as a <u>vector in a k-dimensional space</u>
- = > Item i close to a user x gets a high recommendation rating



Summary: Content-Based R.

- We construct a vector *i* for each item ("item profile") and a vector *x* (of size *s*) for each user
 - Item profile *i*: "natural" attributes of an item
 - User vector x: combination of item profiles rated by this user ("synthetic" profile)
- Prediction heuristic:
 - Given a user vector \mathbf{x} and item vector \mathbf{i} , estimate similarity $\mathbf{u}(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{\mathbf{x} \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$
 - For a user with vector x, recommend by various criteria:
 - E.g. all items with u(x, i) > threshold
 - Rank items by u(x, i), recommend top k (e.g. k=5)

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Thank you.

Questions?

Additional Slides

Overview

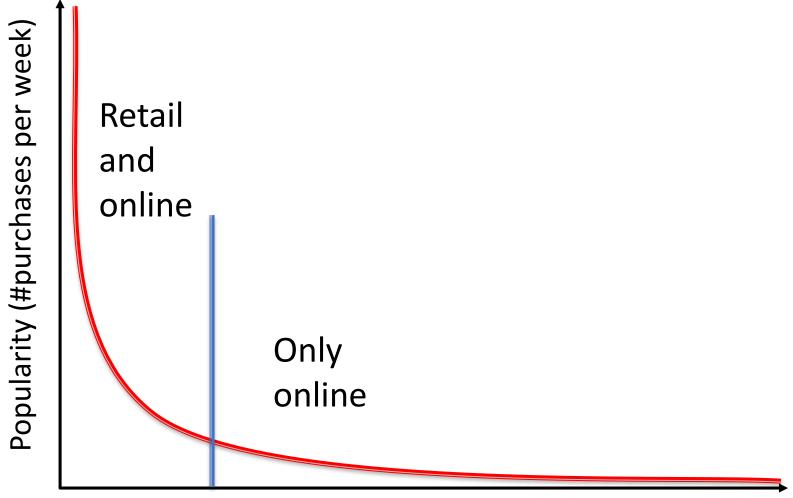
From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products

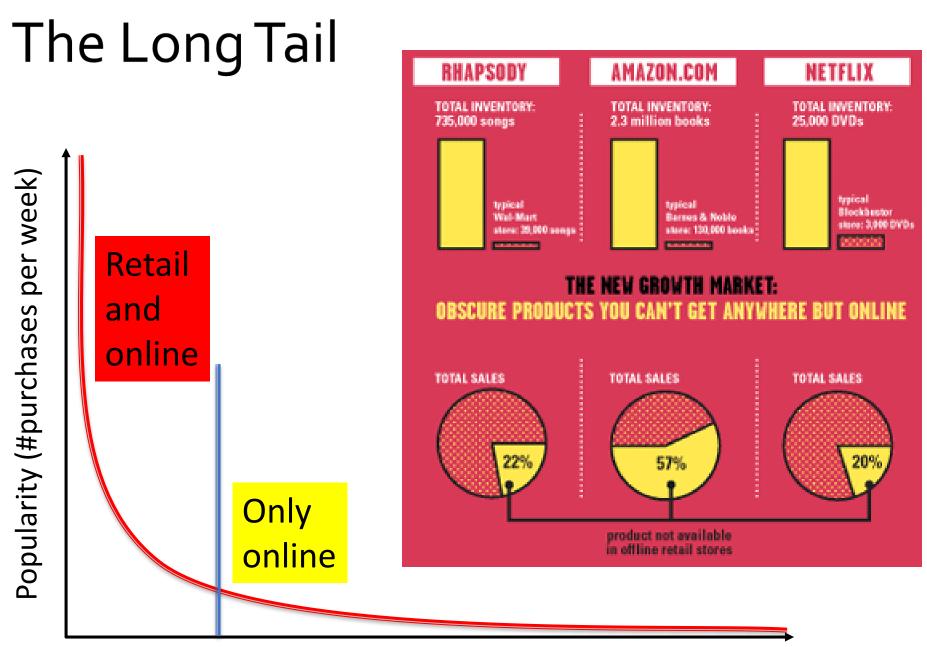
From scarcity to abundance

- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: <u>http://www.wired.com/wired/archive/12.10/tail.html</u>

The Long Tail



Items ranked by popularity



Items ranked by popularity

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

Additional Slides

Collaborative Filtering Details on Similarity and Evaluation

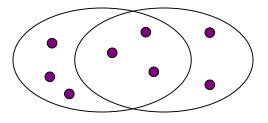
Jaccard Measures

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 sim(C₁, C₂) = |C₁∩C₂|/|C₁∪C₂|
- Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$
- For measuring similarity of users, we consider <u>only sets of</u> <u>items</u> for which users voted
- Problem? Values of ratings are ignored!

$$\mathbf{r}_{\mathbf{x}} = [*, _, _, *, ***] \\
 \mathbf{r}_{\mathbf{y}} = [*, _, **, **, _]$$

$$r_x, r_y \text{ as sets:}$$

 $r_x = \{1, 4, 5\}$
 $r_y = \{1, 3, 4\}$



3 in intersection 8 in union Jaccard similarity = 3/8 Jaccard distance = 5/8

A Good Similarity Metric

	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
 - Jaccard similarity: 1/5 < 2/4 => bad
 - Cosine similarity: 0.386 > 0.322 => not good
- Solution: subtract the (row) mean

	HP1	HP2	HP3	\mathbf{TW}	SW1	SW2	SW3	Notice: cos similarity
$egin{array}{c} A \\ B \\ C \end{array}$	$2/3 \\ 1/3$	1/3	-2/3	5/3 -5/3	-7/3 1/3	4/3		is = correlation when data is
$\overset{\circ}{D}$	sim	0 A B 1	vs A.	,	,	,	0	centered at 0! $\sum_{i} r_{xi} r_{yi}$
<i>sim A</i> , <i>B</i> vs. A,C:			- - st	(x , y	$\int - \sqrt{2}$	$\frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sum_{i} r_{xi}^2 \cdot \sqrt{\sum_{i} r_{yi}^2}}$		

Evaluating Predictions

How to compare predictions with known ratings?

Root-mean-square error (RMSE), details: link

$$\sqrt{\frac{1}{N}\sum_{xi}(r_{xi}-r_{xi}^*)^2}$$

where r_{xi} is predicted, r^{*}_{xi} is the true rating of x on i, and N is the number of ratings (= number of used (x,i) combinations)

0/1 model

- Coverage: Number of items/users for which system can make predictions
- Precision: Accuracy of predictions
- Receiver operating characteristic (ROC): Tradeoff curve between false positives and false negatives

Additional Slides

Content-based Recommender Systems

Problems with Simple User Profiles

The user profile becomes:

$$(r_1i_1 + r_2i_2 + r_3i_3 + r_4i_4 + r_5i_5)/5 =$$

$$(3\begin{bmatrix}1\\0\end{bmatrix}+5\begin{bmatrix}1\\0\end{bmatrix}+1\begin{bmatrix}0\\1\end{bmatrix}+2\begin{bmatrix}0\\1\end{bmatrix}+4\begin{bmatrix}0\\1\end{bmatrix})/5 = \begin{bmatrix}8/5\\7/5\end{bmatrix}$$

- Problem 1: user likes actor A more than actor B, but this shows only <u>weakly</u> in his profile!
- Problem 2: with more ratings, each component becomes smaller (as n gets larger)
 - Because components with value 0 disturb the average, but should be treated as "don't care about corresp. rating"

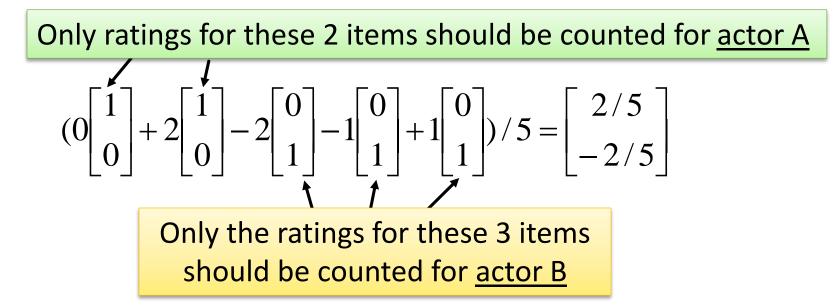
For 1: Normalizing Ratings

- Solution for 1: Normalize ratings by <u>subtracting</u> <u>user's mean</u> rating (which is 3 = (3+5+1+2+4)/5)
 - Normalized ratings for actor A movies => 0, +2
 - Normalized ratings for actor A movies => -2, -1, +1
- Then the user profile is:
 - With r₁=0, r₂=+2, r₃=-2, r₄=-1, r₅=+1

$$(0\begin{bmatrix}1\\0\end{bmatrix}+2\begin{bmatrix}1\\0\end{bmatrix}-2\begin{bmatrix}0\\1\end{bmatrix}-1\begin{bmatrix}0\\1\end{bmatrix}+1\begin{bmatrix}0\\1\end{bmatrix})/5 = \begin{bmatrix}2/5\\-2/5\end{bmatrix}$$

Now better: clear distinction for actor A and actor B

For 2: Per-component Weights



- <u>Essence of problem 2</u>: a 0 in an item's component (=attribute) k should mean "don't care", but now mean "one more neutral rating for attribute k"
- = > Use "individual" n for each vector component
 - For actor A: $n_A = 2$, for actor B: $n_B = 3$

For 2: Per-component Weights

=> Use "individual" n for each vector component

- For actor A: $n_A = 2$, for actor B: $n_B = 3$
- Recall: Normalized ratings are r₁=0, r₂=+2, r₃=-2, r₄=-1, r₅=+1
- Then the user profile becomes:

$$\begin{bmatrix} r_{1} / n_{a} \\ 0 \end{bmatrix} + \begin{bmatrix} r_{2} / n_{a} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ r_{3} / n_{b} \end{bmatrix} + \begin{bmatrix} 0 \\ r_{4} / n_{b} \end{bmatrix} + \begin{bmatrix} 0 \\ r_{5} / n_{b} \end{bmatrix} = \begin{bmatrix} 0 / 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 / 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 / 3 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 / 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 / 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 / 3 \end{bmatrix}$$

Sidenote: Text Features

- How to pick important text features?
- Usual heuristic from text mining is TF-IDF (Term-frequency * Inverse-Doc-Frequency)
 - Term == Feature
 - Doc(ument) == Item
- Now popular: word embeddings like word2vec
 - Each word is represented as a (sub)vector
 - Such vectors represent typical contexts (other words) in which this one occur
 - This distributed representation is learned from data

Sidenote: **TF-IDF**

- For term = *i* and doc = *j*, the **TF-IDF** score w_{ij} is: $w_{ij} = TF_{ij} * IDF_i$
- **TF** (term frequency):

Then:

Let *f*_{ij} be frequency of term *i* in document *j*

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" docs

- **IDF** (inverse document frequency (of a term)):
 - Let N = total number of docs, n_i = number of docs that mention term i

• Then:
$$IDF_i = \log \frac{N}{n_i}$$