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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/
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Programming in Spark & MapReduce





 Scholar X

▪ Buys Metallica CD

▪ Buys Megadeth CD

 Scholar Y

▪ Does search on Metallica

▪ Recommender system 
suggests Megadeth 
▪ From data about X
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Items

Search Recommendations

Products, web sites, 

blogs, news items, …
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Examples:



 Value for users

▪ Find things that are interesting

▪ Narrow down the set of choices

▪ Discover new things …

 Value for providers

▪ Increase trust and customer loyalty

▪ Increase sales, click rates, conversion etc.

▪ Opportunities for promotion
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 X = set of Customers
 S = set of Items

 Utility function u: X × S → R

▪ R = set of ratings

▪ R is a totally ordered set

▪ e.g., 0-5 stars, real number in [0,1]
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 (1) Gathering “known” ratings for matrix
▪ How to collect the data in the utility matrix

 (2) Extrapolate unknown ratings from the 
known ones
▪ Mainly interested in what people like (high scores)

▪ Key problem: Utility matrix U is sparse
▪ Cold start: New items have no ratings / New users have no 

history

 (3) Evaluating extrapolation methods
▪ How to measure success/performance of

recommendation methods
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A. Collaborative filtering (CF)

▪ Two Versions: user-user and item-item

B. Content-based recommenders

▪ Difficult in practice due to manually drafted 
features

C. Latent factor models (LF)

▪ Improves on B by finding latent features 
automagically
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Version: User-User



 Consider user x

 Find set N of other 
users whose ratings 
are “similar” to 
x’s ratings

 Estimate x’s ratings 
based on ratings 
of users in N
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 Let 𝑟𝑥 be the vector of user 𝑥’s ratings
 Let 𝑁 be the set of 𝑘 “neighbors” of 𝑥

▪ = users most similar to 𝑥 (by metric 𝑠𝑖𝑚(𝑥, 𝑦), later)

▪ … who have already rated item 𝑖

 The predicted rating of user 𝑥 for item 𝑖 is:

𝑟𝑥𝑖 =
1

𝑘
෍

𝑦∈𝑁

𝑟𝑦𝑖

15

Average rating of k 
“neighbors” of x for item i



 Let 𝑟𝑥 be the vector of user 𝑥’s ratings
 Let 𝑁 be the set of 𝑘 “neighbors” of 𝑥

▪ =users most similar to 𝑥 (by 𝑠𝑖𝑚(𝑥, 𝑦))

▪ … who have already rated item 𝑖

 The predicted rating of user 𝑥 for item 𝑖 is:

𝑟𝑥𝑖 =
σ𝑦∈𝑁 𝑠𝑖𝑚(𝑥, 𝑦) ⋅ 𝑟𝑦𝑖
σ𝑦∈𝑁 |𝑠𝑖𝑚 𝑥, 𝑦 |
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Improvement here: we scale the recommendations of other 
user 𝑦 by similarity 𝑠𝑖𝑚(𝑥, 𝑦) of 𝑥 to this “neighbor” 𝑦

Note: Expression 𝑠𝑖𝑚 𝑥, 𝑦 for 𝑦 ∈ 𝑁 should be positive since 𝑦 and 𝑥 are by
definition similar; but for general case, use |𝑠𝑖𝑚(𝑥,𝑦)| in denominator!



Computing 𝑵 = the set of 𝑘 users most similar to 𝑥
▪ According to 𝑠𝑖𝑚(𝑥, 𝑦), 𝑦’s have already rated item 𝑖

 1. Find all users 𝑦 who have
already rated item 1
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Computing 𝑁 = the set of 𝑘 users most similar to 𝑥
▪ According to 𝑠𝑖𝑚(𝑥, 𝑦), 𝑦’s have already rated item 𝑖

 1. Find all users 𝑦 who have
already rated item 1
▪ Solution:  𝑦 ∈ {1, 3, 6}

 2. Compute 𝑠𝑖𝑚(𝑥, 𝑦) for users 𝑦
▪ Let 𝑠5,1 = 𝑠𝑖𝑚(5,1), 𝑠5,3 = …
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Computing 𝑁 = the set of 𝑘 users most similar to 𝑥
▪ According to 𝑠𝑖𝑚(𝑥, 𝑦), 𝑦’s have already rated item 𝑖

 1. Find all users who have already
rated item 1

 2. For such users 𝑦 (here 𝑦 ∈
{1, 3, 6}) compute 𝑠𝑖𝑚(𝑥, 𝑦)
▪ Let 𝑠5,1 = 𝑠𝑖𝑚(5,1), 𝑠5,3 = …

 3. Among {𝑠5,1, 𝑠5,3, 𝑠5,6}, find top 𝑘
values (say 𝑘=2)
▪ E.g. 𝑠5,3, 𝑠5,6 largest => 𝑁 = {3,6}
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 Let rz be the column of user z’s ratings:

▪ Turn stars to numbers, fill missing values with 0’s

▪ => We can consider 𝑟𝑥, 𝑟𝑦 as vectors

 Use  Cosine similarity measure

▪ 𝑠𝑖𝑚(𝒙, 𝒚) = cos(𝒓𝒙, 𝒓𝒚) = 
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

▪ cos(𝒓𝒙, 𝒓𝒚) is just the angle bw. 𝑟𝑥, 𝑟𝑦, from 1 (=similar) to -1 

(“opposite”)
20

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as vectors, NaN’s -> 0’s:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}



 Cosine similarity measure

▪ 𝑠𝑖𝑚(𝒙, 𝒚) = cos(𝒓𝒙, 𝒓𝒚) = 
𝑟𝑥⋅𝑟𝑦

||𝑟𝑥||⋅||𝑟𝑦||

 Problem 1: Missing ratings become low ratings! 
▪ 0’s are interpreted as (very) low ratings

▪ Items not rated by a user are considered as disliked!

 Problem 2: Users have different bias
▪ I.e. some give higher ratings on average, others low 

ratings on average
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rx, ry as vectors:

rx = {1, 0, 0, 1, 3}

ry = {1, 0, 2, 2, 0}
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 Solution for problems 1 & 2
▪ For P1, consider only parts of the vectors 𝑟𝑥, 𝑟𝑦
▪ Vector entries for items rated by both users 𝑥 and 𝑦

▪ For P2, normalize or center each vector: substract average user’s 
rating

 => Use Pearson correlation coefficient on partial vectors
▪ Pearson CC is computed as cosine similarity between centered vectors

 Definition and formula
▪ 𝑺𝒙𝒚 = items rated by both users 𝑥 and 𝑦

▪ ҧr𝑥, ҧr𝑦,… = average ratings of users 𝑥, 𝑦, …
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𝒔𝒊𝒎 𝒙, 𝒚 =
σ𝒔∈𝑺𝒙𝒚

𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

σ𝒔∈𝑺𝒙𝒚
𝒓𝒙𝒔 − 𝒓𝒙

𝟐 σ𝒔∈𝑺𝒙𝒚
𝒓𝒚𝒔 − 𝒓𝒚

𝟐

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]



 For recommendations, we use only most similar 
users, or “neighbors” N(𝑥) of 𝑥

 A. Set a threshold for user similarity
▪ If a user has higher similarity than a threshold, he/she 

can be regarded as a “similar” user

 B. Focus on top 𝑘 similar users (kNN method)
▪ If a user ranks at the top 𝑘 similarity, he/she can be 

regarded as a similar user
▪ 𝑘 is often set to between 50 ~ 200
▪ In worst cases, a system uses rating information of 

users with low similarity
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 The predicted rating for item 𝑖 and user 𝑥 is

𝑟𝑥𝑖 =
σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦) ⋅ 𝑟𝑦𝑖

σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦)

 But it is good consider the bias or baseline of 
user 𝑥:

𝑟𝑥𝑖 = 𝒓𝒙 +
σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦) ⋅ (𝑟𝑦𝑖 − 𝒓𝒙)

σ𝑦∈𝑁(𝑥) 𝑠𝑖𝑚(𝑥, 𝑦)
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Version: Item-Item



 Lack of data: If users haven’t rate the same 
items yet, user similarity cannot be computed

 Instability

▪ It is rare that two users rated the same item 

▪ => User sim. drastically changes with few new ratings 

▪ User preferences (user features) often change, 
while item features do not often change

 Computational cost

▪ In general, #Users >> #ltems => high cost of finding 
nearest neighbors (similar users)
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 For item 𝑖, find similar items rated by user 𝑥

▪ Let 𝑁(𝑖; 𝑥) be the set of such items

▪ We can use similarity metrics 𝑠𝑖𝑚() as before 

 Estimate rating of user 𝑥 for item 𝑖 based on 
her/his previous ratings for the items in 𝑁(𝑖; 𝑥)

 The predicted rating of user 𝑥 for item 𝑖 is:

𝑟𝑥𝑖 =
σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗) ⋅ 𝑟𝑥𝑗

σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗)
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Neighbor selection:

Identify movies similar to 

movie 1, rated by user 5
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We use Pearson correlation as similarity:

1) Subtract mean rating mi from each movie i

m1 = (1+3+5+5+4)/5 = 3.6

row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

1.00

0.41

-0.10

-0.31

0.59

sim(1,m)
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Compute similarity weights:

s1,3= 0.41, s1,6= 0.59
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Predict by taking the weighted average:

𝒓𝟏 𝟓= (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6
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𝑟𝑥𝑖 =
σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗) ⋅ 𝑟𝑥𝑗

σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖, 𝑗)
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 Define similarity 𝑠𝑖𝑚(𝑖, 𝑗) of items 𝑖 and 𝑗
 Select 𝑘 nearest neighbors 𝑁(𝑖; 𝑥)

▪ Items most similar to 𝑖 that were rated by 𝑥

 Estimate rating 𝑟𝑥𝑖 as the weighted average:

𝑟𝑥𝑖 = 𝑏𝑥𝑖 +
σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖,𝑗)⋅(𝑟𝑥𝑗−𝑏𝑥𝑗)

σ𝑗∈𝑁(𝑖;𝑥) 𝑠𝑖𝑚(𝑖,𝑗)
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baseline estimate for (x,i):
𝒃𝒙𝒊 = 𝝁 + 𝒃𝒙 + 𝒃𝒊

 μ =  overall mean item rating
 bx =  rating deviation of user x

= (avg. rating of user x) – μ
 bi =  rating deviation of item i

baseline estimate for (x,j)



 + Works for any kind of item

▪ No feature selection needed
 - Cold Start:
▪ Need enough users in the system to find a match

 - Sparsity: 
▪ The user/ratings matrix is sparse

▪ Hard to find users that have rated the same items
 - First rater: 
▪ Cannot recommend an item that has not been 

previously rated (e.g. new items, esoteric items)
 - Popularity bias: 
▪ Cannot recommend items to someone with unique taste 

▪ Tends to recommend popular items
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Remarks & Practical Tips
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 In practice, it has been observed that item-item often 
works better than user-user

 Why? Items are simpler, users have multiple tastes

Alice Bob Carol David

Star 
Wars

1 0.2

Matrix 0.5 0.3

Avatar 0.2 1

Pirates 0.4



 Implement two or more different 
recommenders and combine predictions

▪ Perhaps using a linear model

 Add content-based methods to
collaborative filtering

▪ Item profiles for new item problem

▪ Demographics to deal with new user problem
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 Expensive step is finding 𝒌 most similar 
customers: 𝑂(|𝑋|)

▪ X … set of customers

 Too expensive to do at runtime
 But we could pre-compute for all customers

▪ Naïve pre-computation takes time 𝑂( 𝑋 2)

 We will learn how to do this faster!

▪ Near-neighbor search in high dimensions via 
Locality-Sensitive Hashing

▪ Other means: clustering, dimensionality reduction
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 Leverage all the data

▪ Don’t try to reduce data size in an 
effort to make fancy algorithms work

▪ Simple methods on large data do best

 Add more data

▪ e.g., add IMDB data on genres

 More data beats better algorithms
▪ http://anand.typepad.com/datawocky/2008/03/more-data-

usual.html
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A Side-Note



 „Our“ formula for Pearson skips missing values 
(NaN‘s) in the computation  

▪ => We use only items in 𝑺𝒙𝒚 (= items rated by both users x
and y) in each of the 3 sums 

▪ E.g. numerator:  σ𝒔∈𝑺𝒙𝒚
𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

 Better: A. pre-process each vector as follows:

▪ 1. Normalize non-missing values in each vector 
▪ I.e. compute mean over (only) non-missing values, and subtract 
𝑚 from each non-missing value

▪ 2. Replace each missing value by 0

 … and B. use standard Pearson formula (no skipping)
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 Example phase A:

▪ 1. Normalize non-missing values in each vector 
▪ I.e. compute mean over (only) non-missing values, and subtract 
𝑚 from each non-missing value

▪ 2. Replace each missing value by 0’s

 xr = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]

▪ 1a. Compute mean:  𝑚 = (1+3+5+5+4)/5 = 3.6

▪ 1b. Subtract mean 𝑚 from each non-missing value:
xr-m = [-2.6, nan, -.6, nan, nan, 1.4, nan, nan, 1.4, nan, .4, nan]

▪ 2. Replace NaN’s by 0’s:

 x = [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
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 xr = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]

 x = [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

yr = [2, 4, nan, 1, 2, nan, 3, nan, 4, 3, 5, nan]

 y = [-1, 1, 0, -2, -1,  0,  0,  0,  1,  0,  2,  0]

▪ B. Compute „normal“ Pearson of x, y: 0.4140393356
 Why is the result same as using 𝑺𝒙𝒚 and “skipping”?

▪ If a value (rating) is missing, it becomes 0 after pre-
processing => same as “skipping” it in each sum

▪ E.g. numerator: σ𝒔∈𝑺𝒙𝒚
𝒓𝒙𝒔 − 𝒓𝒙 𝒓𝒚𝒔 − 𝒓𝒚

▪ s ∉ Sxy => 𝒓𝒙𝒔 − 𝒓𝒙 = 𝟎 or 𝒓𝒚𝒔 − 𝒓𝒚 = 𝟎

▪ => No contribution to the sum, i.e. as if skipped!
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from scipy import nan
import numpy as np
from scipy.stats import pearsonr

def normalize (input: list):
mean = np.nanmean(input)
return input - mean

def preprocess_vec (input: list):
"Normalize and remove NaN's"
return np.nan_to_num(normalize(input))
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# Rows (items) from slide "Item-Item CF (Set |N|=2)"
# x is item 1, y is item 3
xraw = [1, nan, 3, nan, nan, 5, nan, nan, 5, nan, 4, nan]
x = preprocess_vec(xraw)
yraw = [2, 4, nan, 1, 2, nan, 3, nan, 4, 3, 5, nan]
y = preprocess_vec(yraw)

# Correlation of x and y
corr_xy, p_value = pearsonr(x, y)
print (f"Pearson correlation of x and y is {corr_xy}")

=> Pearson correlation of x and y is 0.4140393356054126
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 Main idea: Recommend to customer x items 
similar to previous items rated highly by x

Example:
 Movie recommendations

▪ Recommend movies with same actor(s), genre,
director,…

 Websites, blogs, news

▪ Recommend other sites with “similar” content
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 For each item, create an item profile

 Profile is a set (vector) 𝑣 of features

▪ Movies: author, title, actor, director,…

▪ Text: Set of “important” words in document

 Binary encoding (0/1) is used frequently

▪ Each (famous) actor gets a fixed vector position k

▪ If present in the movie, 𝑣𝑘 is set to 1, else to 0
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 Representing item profile – a “mixed” vector
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 Idea: average the profiles of all items rated by a user
 Weight each such item profile by the rating of this user

 Let use u give items 1, 2, …, n ratings r1, r2, …, rn

 User profile x = weighted average of rated item 
profiles

x = (r1*i1 + r2*i2 + .. + rn*in )/n

54

Profiles of items 1, 2, .., n (those 
rated by user u) - vectors

Weights = ratings 



 Items are movies, only features are “actors”

▪ Item profile has 2 components (for actor A and actor B)

 User ratings are 1 to 5 stars (per movie)
 User watched 5 movies

▪ Actor A – movies got 3 and 5 stars (movies 1 & 2)

▪ Actor B – movies got 1, 2 and 4 stars (movies 3, 4, 5)

 Ratings are  r1=3, r2=5, r3=1, r4=2, r5=4
 Item profiles are as above 
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 The user profile becomes:
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Such simple user profiles can exhibit low quality
(esp. if a user rated only few items) => 

See additional slides for problems & solutions: 
Slides from “Problems with Simple User Profiles”



 To compute similarity of user profile and item 
profile, use a prediction heuristic:

▪ Given user profile x and item profile i, estimate 

𝒖(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙·𝒊

| 𝒙 |⋅| 𝒊 |
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 In content-based recommendation, we represented each 
item and each user as a vector in a k-dimensional space

 => Item i close to a user x gets a high recommendation rating
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Geared 
towards 
females

Geared 
towards 
males

Serious

Funny

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence 
Day

Amadeus
The Color 
Purple

Dumb and 
Dumber

Ocean’s 11

Sense and 
Sensibility

k = 2:
dim1 = ser. vs. funny
dim2 = fem. vs. male



 We construct a vector 𝒊 for each item (“item 
profile”) and a vector 𝒙 (of size 𝑠) for each user

▪ Item profile  𝒊: “natural” attributes of an item

▪ User vector 𝒙: combination of item profiles rated by this 
user (“synthetic” profile)

 Prediction heuristic:

▪ Given a user vector x and item vector 𝒊, estimate similarity

𝒖(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙 · 𝒊

| 𝒙 | ⋅ | 𝒊 |

▪ For a user with vector 𝒙, recommend by various criteria:
▪ E.g. all items with 𝑢 𝒙, 𝒊 > threshold

▪ Rank items by 𝑢 𝒙, 𝒊 , recommend top 𝑘 (e.g. 𝑘=5)
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 +: No need for data on other users

▪ No cold-start or sparsity problems

 +: Able to recommend to users with 
unique tastes

 +: Able to recommend new & unpopular items

▪ No first-rater problem

 +: Able to provide explanations

▪ Can provide explanations of recommended items by 
listing content-features that caused an item to be 
recommended
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 –: Finding the appropriate features is hard

▪ E.g., images, movies, music

 –: Recommendations for new users

▪ How to build a user profile?

 –: Overspecialization

▪ Never recommends items outside user’s 
content profile

▪ People might have multiple interests

▪ Unable to exploit quality judgments of other users
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Questions?



Overview



 Shelf space is a scarce commodity for traditional 
retailers 
▪ Also: TV networks, movie theaters,…

 Web enables near-zero-cost dissemination 
of information about products
▪ From scarcity to abundance

 More choice necessitates better filters
▪ Recommendation engines

▪ How Into Thin Air made Touching the Void
a bestseller: http://www.wired.com/wired/archive/12.10/tail.html
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http://www.wired.com/wired/archive/12.10/tail.html
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 Explicit

▪ Ask people to rate items

▪ Doesn’t work well in practice – people 
can’t be bothered

 Implicit

▪ Learn ratings from user actions

▪ E.g., purchase implies high rating

▪ What about low ratings?
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Collaborative Filtering
Details on Similarity and Evaluation



 The Jaccard similarity of two sets is the size of their 
intersection divided by the size of their union:  
sim(C1, C2) = |C1C2|/|C1C2|

 Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

 For measuring similarity of 
users, we consider only sets of 
items for which users voted

 Problem? Values of ratings are 
ignored!
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3 in intersection

8 in union

Jaccard similarity = 3/8

Jaccard distance  = 5/8

rx = [*, _, _, *, ***]

ry = [*, _, **, **, _]

rx, ry as sets:

rx = {1, 4, 5}

ry = {1, 3, 4}



 Intuitively we want: 𝑠𝑖𝑚(𝑨,𝑩) > 𝑠𝑖𝑚(𝑨, 𝑪)
▪ Jaccard similarity: 1/5 < 2/4 => bad

▪ Cosine similarity: 0.386 > 0.322 => not good
 Solution: subtract the (row) mean
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𝑠𝑖𝑚 𝑨,𝑩 vs. A,C:
0.092 > -0.559

Notice: cos similarity 

is = correlation

when data is 

centered at 0!

=> 𝑠𝑖𝑚(𝒙, 𝒚) =
σ𝒊 𝒓𝒙𝒊⋅𝒓𝒚𝒊

σ𝒊 𝒓𝒙𝒊
𝟐 ⋅ σ𝒊 𝒓𝒚𝒊

𝟐



How to compare predictions with known ratings?

 Root-mean-square error (RMSE), details: link

▪
1

𝑁
σ𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖

∗ 2

▪ where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊
∗ is the true rating of x on i, and N is 

the number of ratings (= number of used (x,i) combinations)

 0/1 model
▪ Coverage: Number of items/users for which system can make 

predictions 

▪ Precision: Accuracy of predictions 

▪ Receiver operating characteristic (ROC): Tradeoff curve 
between false positives and false negatives
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https://www.kaggle.com/wiki/RootMeanSquaredError


Content-based 
Recommender Systems



 The user profile becomes:

 Problem 1: user likes actor A more than actor B, but 
this shows only weakly in his profile!

 Problem 2: with more ratings, each component 
becomes smaller (as n gets larger)

▪ Because components with value 0 disturb the average, but 
should be treated as “don’t care about corresp. rating” 
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 Solution for 1: Normalize ratings by subtracting 
user’s mean rating (which is 3 = (3+5+1+2+4)/5)

▪ Normalized ratings for actor A movies => 0, +2

▪ Normalized ratings for actor A movies => -2, -1, +1

 Then the user profile is:

▪ With r1=0, r2=+2, r3=-2, r4=-1, r5=+1
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Now better: clear distinction 
for actor A and actor B



 Essence of problem 2: a 0 in an item’s component 
(=attribute) k should mean “don’t care”, but now 
mean “one more neutral rating for attribute k”  

 => Use “individual” n for each vector component

▪ For actor A: nA =2, for actor B: nB = 3
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Only the ratings for these 3 items 
should be counted for actor B

Only ratings for these 2 items should be counted for actor A



 => Use “individual” n for each vector component

▪ For actor A: nA =2, for actor B: nB = 3

▪ Recall: Normalized ratings are  r1=0, r2=+2, r3=-2, r4=-1, r5=+1

 Then the user profile becomes:
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 How to pick important text features?
 Usual heuristic from text mining is TF-IDF

(Term-frequency * Inverse-Doc-Frequency)

▪ Term == Feature

▪ Doc(ument) == Item

 Now popular: word embeddings like word2vec

▪ Each word is represented as a (sub)vector

▪ Such vectors represent typical contexts (other 
words) in which this one occur

▪ This distributed representation is learned from data
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https://en.wikipedia.org/wiki/Word_embedding


 For term = 𝑖 and doc = 𝑗, the TF-IDF score 𝒘𝒊𝒋 is: 
𝒘𝒊𝒋 = 𝑻𝑭𝒊𝒋 ∗ 𝑰𝑫𝑭𝒊

TF (term frequency):
▪ Let 𝒇𝒊𝒋 be frequency of term 𝒊 in document 𝒋

▪ Then:

IDF (inverse document frequency (of a term)):
▪ Let 𝑵 = total number of docs, 𝒏𝒊 = number of docs that 

mention term 𝒊

▪ Then:
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Note: we normalize TF

to discount for “longer” docs


