
Lecture 4

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

 We have already seen two approaches to
recommender systems:

▪ A. Collaborative filtering

▪ B. Content-based recommenders

 Today:

▪ C. Latent factor models

4

 Find set 𝑺 of items similar to item i=1 rated by
target user x=5, and predict 𝒓𝟓 𝟏 as a weighted sum
of ratings (of this user x) over all items in 𝑺

 => Rating 𝒓𝟓 𝟏 is predicted as a weighted sum of
other rows (= ratings of similar items by this user)

5

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

it
e

m
s

1.00

-0.18

0.41

-0.10

-0.31

0.59

sim(1,m)

𝑺 = {𝟑, 𝟔}

 Find set 𝑸 of users similar to target user x=5 who
have rated item 𝑖 = 1, and predict 𝒓𝟓 𝟏 as a
weighted sum of ratings for item 1 by all users in 𝑸

 => Rating r5,1 is predicted as a weighted sum of other
columns (ratings of similar other users)

6

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

it
e

m
s

𝑸 = {𝟑, 𝟏𝟏}

 We construct for each item a vector 𝒊 (“item profile”)
and for each user a vector 𝒙 (“user profile”)

▪ Item profile 𝒊: k “natural” attributes of an item

▪ User vector 𝒙: a combination of item profiles for similar
items rated by this user (also a k-vector)

 Prediction heuristic:

▪ A content-based prediction 𝒓𝒙 𝒊 is approximated as
similarity of these two k-vectors: 𝒓𝒙 𝒊 = 𝒖(𝒙, 𝒊)

▪ I.e., given a user profile x and item profile 𝒊, estimate their
similarity as:

𝒖(𝒙, 𝒊) = cos(𝒙, 𝒊) =
𝒙 · 𝒊

| 𝒙 | ⋅ | 𝒊 |
7

x

i

 In content-based recommendation, we represented each
item and each user as a vector in a k-dimensional space

 => Item i close to a user x gets a high recommendation rating

8

Geared
towards
females

Geared
towards
males

Serious

Funny

The Princess
Diaries

The Lion King

Braveheart

Lethal Weapon

Independence
Day

Amadeus
The Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

k = 2:
dim1 = ser. vs. funny
dim2 = fem. vs. male

Content-based: each rating is
a product of two k-vectors
“outside” the utility matrix
CF: each rating is a weighted
sum of other ratings from
the utility matrix

10

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

it
e

m
s

users

Can we combine both worlds:
=> product of vectors from UM?

 Representing each item by a k-vector qi and each user by
k-vector px is a promising idea

 But can we replace hand-crafted item-profiles by (new)
synthetic profiles derived from the utility matrix?

▪ Similarly, for user profiles?

11

121110987654321

455 ?311

3124452

534321423

245424

5224345

423316

users

it
e

m
s

Other view: factorize the utility matrix R
▪ = represent as product of two “thin” matrices)

 Let’s assume we can approximate the utility matrix R as
a product of “thin” Q · PT

 R has missing entries but let’s ignore that for now
▪ We want the reconstruction error to be small on known ratings

▪ We don’t care about the values on the missing ones

12

45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

≈

users

it
e

m
s

PT

Q

it
e
m

s

users

R

factors (length k) fa
c
to

rs
 (le

n
g
th

 k
)

 Prediction: estimating the missing rating of
user x for item i

13

45531

312445

53432142

24542

522434

42331

it
e
m

s

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

≈

it
e

m
s

users

users

?

PT

ො𝒓𝒙𝒊 = 𝒒𝒊 ⋅ 𝒑𝒙

=

𝒇

𝒒𝒊𝒇 ⋅ 𝒑𝒙𝒇

qi = row i of Q

px = column x of PT

fa
c
to

rs

Q

factors

Similar to
cos 𝑞𝑖 , 𝑝𝑥 but
no scalar factor

 Prediction: estimating the missing rating of
user x for item i

14

45531

312445

53432142

24542

522434

42331

it
e
m

s

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

≈

it
e

m
s

users

users

?

PT

fa
c
to

rs

Qfactors

ො𝒓𝒙𝒊 = 𝒒𝒊 ⋅ 𝒑𝒙

=

𝒇

𝒒𝒊𝒇 ⋅ 𝒑𝒙𝒇

qi = row i of Q

px = column x of PT

2.4

15

The Princess
Diaries

The Lion King

Braveheart

Lethal
Weapon

Independence
Day

AmadeusThe Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

Factor 1

F
a
c

to
r

2

 How to compare predictions with known
ratings?

 Root-mean-square error (RMSE), details: link

▪
1

𝑁
σ𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖

∗ 2

▪ where 𝒓𝒙𝒊 is predicted, 𝒓𝒙𝒊
∗ is the true rating of x on i,

▪ N is the number of ratings (= # of (x,i) combinations)
 Assume that number of ratings N is fixed
 Equivalent to this this is sum-of-squared-errors

(SSE):
▪ σ𝑥𝑖 𝑟𝑥𝑖 − 𝑟𝑥𝑖

∗ 2

 Why equivalent?

18

https://www.kaggle.com/wiki/RootMeanSquaredError

 Our goal is to find matrices P and Q such
which minimize SSE:

𝑚𝑖𝑛
𝑃,𝑄

𝑖,𝑥 ∈𝑅

𝑟𝑥𝑖 − 𝑞𝑖 ⋅ 𝑝𝑥
2

19

45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

PT

Q

users

it
e

m
s

factors

fa
c
to

rsit
e

m
s

users
True rating

Estimation

 A simple way to minimize a function 𝒇(𝒙):

▪ Compute a derivative 𝛻𝑓

▪ Start at some point 𝑦 and evaluate 𝛻𝑓(𝑦)

▪ Make a step in the reverse direction of the
gradient: 𝑦 = 𝑦 − 𝛻𝑓(𝑦)

▪ Repeat until converged

20

𝑓

𝑦

𝑓 𝑦 + 𝛻𝑓(𝑦)

 We want to minimize SSE for unseen test data
 Idea: Minimize SSE on training data

▪ We want a large k (# of factors) to capture all complexity

▪ But, SSE on test data begins to rise for k > 2

 Why?

 This is a classic example of overfitting:

▪ With too much freedom (too many free parameters)
the model starts fitting to irrelevant details

▪ That is it fits too well the training data and thus not
generalize well to unseen test data

21

1 3 4

3 5 5

4 5 5

3

3

2 ? ?

?

2 1 ?

3 ?

1

How could an overfitting AI interpret these signs?

 Red cars are not allowed to overtake black cars

 Red “square” tracks are not allowed to overtake
black cars

22

 To solve overfitting we introduce regularization:

▪ Allow rich model where there are sufficient data

▪ Use scarce model where data quantity is low

 What is a rich/scarce model in our case?

▪ For a user x we control factors in px (for item i: qi)

 Scarce model could be:

▪ for user x: lot of zeros in px

▪ For item i: lot of zeros in qi

 But function „number of zeros“ is hard to optimize

 => Use squared norm: 𝒑𝒙
𝟐 = 𝒑𝒙,𝟏

𝟐 +⋯+ 𝒑𝒙,𝒌
𝟐

▪ A fair approximation of „number of zeros“

23

 Regularization:

▪ Allow rich model where there are sufficient data

▪ Shrink model where data are scarce

24

++

−

 i

i

x

x

Rix

xixi
QP

qppqr
2

2

2

1

),(

2

,

)(min

1 3 4

3 5 5

4 5 5

3

3

2 ? ?

?

2 1 ?

3 ?

1

1, 2 … user set regularization parameters
“error” “length”

Note: We do not care about the “raw” value of the objective function,
but we want P, Q that achieve the minimum of the objective

 Assume that user x made only 1 rating 𝑟𝑥𝑖
▪ We use a simple model, e.g. 𝑝𝑥 = 0 as the error

term 𝑟𝑥𝑖 − 𝑞𝑖𝑝𝑥
2 is at most 𝑟𝑥𝑖

2

▪ => The regularization “penalty” 𝑝𝑥
2 is also small

 Assume that user y made 100 ratings

▪ It make sense to make py complex (𝑝𝑦
2>> 0) so that

the sum of 100 errors (𝑟𝑦𝑖 − 𝑞𝑖𝑝𝑦)
2 remain small

▪ Large 𝑝𝑦
2

is not good for minimizing the objective
function but still better than having 100 large errors!

 The same for items i (freq. rated <=> „rich“ 𝑞𝑖)

25

Little data for this user: user profile
𝑝𝑥 with small squared norm 𝑝𝑥

2

Geared
towards
females

Geared
towards
males

serious

funny
26

The Lion King

Braveheart

Lethal
Weapon

Independence
Day

AmadeusThe Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

Factor 1

F
a
c
to

r
2

The Princess
Diaries

minfactors “error” + “length”

++−

i

i

x

x

training

xixi
QP

qppqr
222

,

)(min

„Neutral” area: we don’t know
much about users or movies here
=> scarce profiles
=> small "lengths" 𝑝𝑥

2, 𝑞𝑖
2

Koren, Bell, Volinksy, IEEE Computer, 2009
27

 We want to fit a straight line 𝑤1 +𝑤2𝑥 in ℝ2 to a set of
points (𝑥1, 𝑦1), … . (𝑥𝑛, 𝑦𝑛)

 => Find “best“ values for the parameters 𝑤1, 𝑤2

▪ Let 𝑤 = [𝑤1, 𝑤2]
𝑇 is a 2-vector to be optimized

 How to do this? And how we measure how “good” is 𝑤?

 1. We introduce an objective function Q w to “measure” 𝑤:

Q(w) =

i=1

n

Qi(w) =

i=1

n

(w1 +w2xi − yi)
2

▪ Q(𝑤) is just a sum of squared errors (SSE) for this 𝑤

▪ What is 𝑛?

 2. We need to minimize Q(𝑤)!

29

 A simple way to minimize a function 𝑸(𝒙):

▪ Compute a gradient (derivative) 𝛻𝑄 of 𝑄

▪ Start at some point 𝑦 and evaluate 𝛻𝑄(𝑦)

▪ Make a step in the reverse direction of the
gradient: 𝑦 = 𝑦 − 𝛻𝑄(𝑦)

▪ Repeat until convergence

30

𝑄

𝑦

𝑄 𝑦 − 𝛻𝑄(𝑦)

 We iterate over values of 𝑤 until 𝑄 𝑤 does not improve
 At each step, we change 𝑤 opposite to the direction of

“fastest growth” of 𝑄 𝑤
 We get the direction of “fastest growth” as a gradient 𝛻𝑄 𝑤

at a current value of 𝑤
▪ Gradient of 𝑄 𝑤 in respect to 𝑤, all other vars in 𝑄 𝑤 are constant!

31

Procedure GD(Q w) # for minizing of Q w
 Input: Objective function 𝑄(𝑤)

▪ 𝑤 is a vector of m parameters to be optimized

 Init: Assign 𝑤 a start value (may be random)
 Repeat until convergence (e. g. Q w gets no

smaller): w ≔ w− α𝛻𝑄(𝑤)

𝛂 is a parameter (“meta-parameter”) called learning rate

 Our current position 𝑤, i.e. current values of all
parameters to be optimized (e.g. 𝑤 = [𝑤1, 𝑤2]

𝑇)
 “Territory” = surface created by the error function 𝑄 in

a space with (#parameters)+1 dimensions

Algorithm:
 Repeat until stopping criterion

▪ We compute the „tangent vector“ 𝛻𝑄(𝑤) at current 𝑤
▪ i.e. 𝛻𝑄(𝑤) is a vector pointing in the direction of the steepest rise from

the current position w

▪ Then we move (= change 𝑤) by some small step α𝛻𝑄(𝑤) in
the opposite direction …

▪ .. and we arrive at a new position w′ = w − α𝛻𝑄(𝑤)
32

Procedure GD(Q w) #for minimization of Q w
 Input: Objective function Q w

▪ 𝑤 is a vector of m parameters to be optimized

 Init: Assign 𝑤 a start value (may be random)
 Repeat until convergence (e. g. Q w gets no smaller):

w ≔ w− α𝛻𝑄(𝑤)

 We have 𝑄 𝑤 = σ𝑖=1
𝑛 𝑄𝑖(𝑤) = σ𝑖=1

𝑛 (𝑤1 +𝑤2𝑥𝑖 − 𝑦𝑖)
2

 Since 𝛻 𝑃 + 𝑄 = 𝛻𝑃 + 𝛻𝑄, we have:

𝛻𝑄 𝑤 = σ𝑖=1
𝑛 𝛻𝑄𝑖(𝑤)

 𝛻𝑄𝑖(𝑤) =
1st derivative of 𝑄𝑖 𝑤 by 𝑤1

1st derivative of 𝑄𝑖 𝑤 by 𝑤2

 𝛻𝑄𝑖 𝑤 =

𝑑𝑄𝑖 𝑤

𝑑𝑤1

𝑑𝑄𝑖 𝑤

𝑑𝑤2

=
2(𝑤1 + 𝑤2𝑥𝑖 − 𝑦𝑖)
2(𝑤1 +𝑤2𝑥𝑖 − 𝑦𝑖)𝑥𝑖

33

One such 2-
vector for each

data point (i=1..n)

 Assume that the objective function Q w is a sum
Q w = σi=1

n Qi(w)

▪ Typically 𝑄𝑖(𝑤) comes from i-th training sample

 By linearity of the gradient 𝛻 𝑃 + 𝑄 = 𝛻𝑃 + 𝛻𝑄
 … we have 𝛻𝑄 𝑤 = σ𝑖=1

𝑛 𝛻𝑄𝑖(𝑤)

 Stochastic Gradient Descent

▪ Instead of computing all 𝛻𝑄1(𝑤),…, 𝛻𝑄𝑛(𝑤) and then
making single step w ≔ w− α𝛻𝑄(𝑤),…

▪ … we make a step after computing each of the “partial
gradients” 𝛻𝑄𝑖(𝑤)

34

Procedure SGD(Q w) #for minimization of Q w

 Input: Objective function Q w = σ𝑖=1
𝑛 𝑄𝑖(𝑤)

▪ 𝑤 is a vector of m parameters to be optimized

 Init: Assign 𝑤 a start value (may be random)
 Repeat until convergence: # outer loop

▪ For i = 1 to n: # inner loop

▪w ≔ w− 𝛽𝛻𝑄𝑖(𝑤)

35

Can you replace the double-loop with something else?

 Our exact gradient 𝑣 (= vector of a steepest ascend)
is a sum of 1000s of (imprecise) vectors 𝑣1,…,𝑣𝑛

 Or: an exact “3D map of a hill” is a sum of 1000s of
3D maps, each possibly a bit blurry/imprecise

Then, in each (inner) iteration step:

GD: You compute exact gradient 𝑣 …

SGD: You compute one of the imprecise gradients 𝑣𝑖…

… and change your position according to this gradient

36

GD or SGD?

 Convergence of GD vs. SGD

37

Iteration/step

V
a
lu

e
 o

f
th

e
 o

b
je

c
ti

v
e
 f

u
n

c
ti

o
n

GD improves the value of
the objective function at
every step.
SGD improves the value in
a “noisy” way.
GD takes fewer steps to
converge but each step
takes much longer to
compute.
In practice, SGD is much
faster!

 SGD is a generic and widely used method
 It can optimize (essentially) any function for which

gradients can be computed
 Especially, it can train neural networks in ML
 Some improved versions are used today:

 Adam: uses adaptive
learning rate + moving
average of gradient

 Others (link):
▪ Momentum, Nesterov

accelerated gradient, Adagrad,
Adadelta, RMSprop, AdaMax,
Nadam, AMSGrad, …

38

From https://openreview.net/pdf?id=Bkg3g2R9FX

https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c
https://ruder.io/optimizing-gradient-descent/
https://openreview.net/pdf?id=Bkg3g2R9FX

 Our goal is to find matrices P and Q which
minimize SSE + regularization term:

40

45531

312445

53432142

24542

522434

42331

.2-.4.1

.5.6-.5

.5.3-.2

.32.11.1

-22.1-.7

.3.7-1

-.92.41.4.3-.4.8-.5-2.5.3-.21.1

1.3-.11.2-.72.91.4-1.31.4.5.7-.8

.1-.6.7.8.4-.3.92.41.7.6-.42.1

PT

Q

users

it
e

m
s

factors

fa
c
to

rsit
e

m
s

users

++−

 i

i

x

x

Rix

xixi
QP

qppqr
2

2

2

1

),(

2

,

)(min

 We want to find matrices 𝑃 and 𝑄 with:

 Gradient decent:
▪ Initialize 𝑃 and 𝑄 (using SVD with missing ratings = 0)

▪ Do gradient descent (iteration step):

▪ 𝑄 𝑄 − · 𝑄

▪ 𝑃 𝑃 − · 𝑃, where 𝑃 is …(later)

▪ 𝑄 is gradient/derivative of matrix 𝑄:
𝛻𝑄 = [𝛻𝑞𝑖𝑓] and 𝛻𝑞𝑖𝑓 = σ𝑥,𝑖−2 𝑟𝑥𝑖 − 𝑞𝑖𝑝𝑥 𝑝𝑥𝑓 + 2𝜆2𝑞𝑖𝑓
▪ Here 𝑞𝑖𝑓 is entry 𝑓 of row 𝑞𝑖 of matrix 𝑄

 Observation: Computing gradients is slow!
41

How to compute gradient of

a matrix?

Compute gradient of every

element independently!

++−

 i

i

x

x

Rix

xixi
QP

qppqr
2

2

2

1

),(

2

,

)(min

Singular Value
Decomposition

Gradient Descent (GD) vs. Stochastic GD
 Instead of evaluating gradient over all ratings evaluate it for

an individual rating and make a step

 GD: 𝑄𝑄 − σ𝑟𝑥𝑖 𝑄𝑥𝑖(𝑟𝑥𝑖)

 SGD: 𝑄𝑄 − 𝜇𝑄𝑥𝑖(𝑟𝑥𝑖) for one 𝑟𝑥𝑖 at a time

▪ 𝜀𝑥𝑖 = 2(𝑟𝑥𝑖 − 𝑞𝑖 ⋅ 𝑝𝑥) (derivative of the “error”)
▪ 𝑞𝑖 ← 𝑞𝑖 + 𝜇1 𝜀𝑥𝑖 𝑝𝑥 − 𝜆2 𝑞𝑖 (update equation)

 SGD: We need more steps but each step is computed much
faster

42

++−

 i

i

x

x

Rix

xixi
QP

qppqr
2

2

2

1

),(

2

,

)(min

Stochastic gradient decent:
 Initialize 𝑃 and 𝑄 (using SVD, pretend missing ratings are 0)
 Iterate over the ratings (multiple times if necessary) and

update matrices 𝑃 and 𝑄:

Step: for each 𝑟𝑥𝑖 …

▪ 𝜀𝑥𝑖 = 2(𝑟𝑥𝑖 − 𝑞𝑖 ⋅ 𝑝𝑥) (derivative of the “error”)

▪ 𝑞𝑖 ← 𝑞𝑖 + 𝜇1 𝜀𝑥𝑖 𝑝𝑥 − 𝜆2 𝑞𝑖 (update equation)

▪ 𝑝𝑥 ← 𝑝𝑥 + 𝜇2 𝜀𝑥𝑖 𝑞𝑖 − 𝜆1 𝑝𝑥 (update equation)

 Two loops:
▪ Repeat until convergence:

▪ For each 𝑟𝑥𝑖
▪ Compute gradient, do a “step”

43

𝜇1, 𝜇2 are learning rates

 Q1. How many parameters to optimize are there,
and where are they?

 A1. The parameters are entries of 𝑃 and 𝑄, and so
we have (#users)*(#factors)+(#items)*(#factors)

 Q2. How many terms (summands) are there in the
1st term (SSE)? (Why do I ask this?)

 A2. The first term (SSE) has as many entries as there
are non-empty ratings in the utility matrix

▪ This determines the length of „inner loop“
44

++−

 i

i

x

x

Rix

xixi
QP

qppqr
2

2

2

1

),(

2

,

)(min

 Mark true statements (multiple-choice possible)

a. If you increase the number of factors in the LF model,
then it is advisable to choose larger regularization
parameters 𝜆1 and 𝜆2.

b. In SGD (inner) iteration step, we change our position
(=parameter choice) only in few selected dimensions;
in a GD step, we change position in (possibly) all dims.

c. In the SGD for LF model, the number of steps of the
inner loop (of SGD) is always (#users)*(#items).

d. If your regularization parameters are very large, GD or
SGD might give you matrices 𝑃 and 𝑄 with only 0’s.

45

Link: https://pingo.coactum.de/147633

https://pingo.coactum.de/147633

 Yehuda Koren, Robert Bell and Chris Volinsky: Matrix
Factorization Techniques for Recommender Systems,
IEEE Computer, August 2009, https://ieeexplore.ieee.org/document/5197422

▪ Easy-to-read paper on modern recommendation techniques

 Albert Au Yeung, Matrix Factorization: A Simple
Tutorial and Implementation in Python, Blog post, 16
September 2010, http://goo.gl/kzoLaO

 Fun: James Surowiecki, The Wisdom of Crowds,
Doubleday; Anchor 2004
▪ Wikipedia (en): http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds

▪ Wikipedia (de): http://de.wikipedia.org/wiki/Die_Weisheit_der_Vielen

47

https://ieeexplore.ieee.org/document/5197422
http://goo.gl/kzoLaO
http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
http://de.wikipedia.org/wiki/Die_Weisheit_der_Vielen

Questions?

 Training data
▪ 100 million ratings, 480,000 users, 17,770 movies

▪ 6 years of data: 2000-2005
 Test data
▪ Last few ratings of each user (2.8 million)

▪ Evaluation criterion: Root Mean Square Error (RMSE) =
1

𝑅
σ(𝑖,𝑥)∈𝑅 Ƹ𝑟𝑥𝑖 − 𝑟𝑥𝑖

2

▪ Netflix’s system RMSE: 0.9514
 Competition
▪ 2,700+ teams

▪ $1 million prize for 10% improvement on Netflix

50

1 3 4

3 5 5

4 5 5

3

3

2 2 2

5

2 1 1

3 3

1

480,000 users

17,700

movies

51

Matrix R

1 3 4

3 5 5

4 5 5

3

3

2 ? ?

?

2 1 ?

3 ?

1

Test Data Set

RMSE =
1

R
σ(𝑖,𝑥)∈𝑅 Ƹ𝑟𝑥𝑖 − 𝑟𝑥𝑖

2

52

480,000 users

17,700

movies

Predicted rating

True rating of

user x on item i

𝒓𝟑,𝟔

Matrix R

Training Data Set

Grand Prize: 0.8563

Netflix: 0.9514

Movie average: 1.0533

User average: 1.0651

Global average: 1.1296

Basic Collaborative filtering: 0.94

53

 Global:

▪ Mean movie rating: 3.7 stars

▪ The Sixth Sense is 0.5 stars above avg.

▪ Joe rates 0.2 stars below avg.
 Baseline estimation:
Joe will rate The Sixth Sense 4 stars

 Local neighborhood (CF/NN):

▪ Joe didn’t like related movie Signs

▪ Final estimate:
Joe will rate The Sixth Sense 3.8 stars

55

56

 μ = overall mean rating
 bx = bias of user x
 bi = bias of movie i

user-movie interactionmovie biasuser bias

User-Movie interaction
 Characterizes the matching between

users and movies
 Attracts most research in the field
 Benefits from algorithmic and

mathematical innovations

Baseline predictor

▪ Separates users and movies

▪ Benefits from insights into user’s
behavior

▪ Among the main practical
contributions of the competition

 We have expectations on the rating by
user x of movie i, even without estimating x’s
attitude towards movies like i

– Rating scale of user x

– Values of other ratings user
gave recently (day-specific
mood, anchoring, multi-user
accounts)

– (Recent) popularity of movie i

– Selection bias; related to
number of ratings user gave on
the same day (“frequency”)

57

 Example:
▪ Mean rating: = 3.7

▪ You are a critical reviewer: your ratings are 1 star
lower than the mean: bx = -1

▪ Star Wars gets a mean rating of 0.5 higher than
average movie: bi = + 0.5

▪ Predicted rating for you on Star Wars:
= 3.7 - 1 + 0.5 = 3.2

58

Overall
mean rating

Bias for
user x

Bias for
movie i

𝑟𝑥𝑖 = 𝜇 + 𝑏𝑥 + 𝑏𝑖 + 𝑞𝑖⋅ 𝑝𝑥
User-Movie
interaction

 Solve:

 Stochastic gradient decent to find parameters

▪ Note: Both biases bx, bi as well as interactions qi, px

are treated as parameters (we estimate them)

59

regularization

goodness of fit

 is selected via grid-

search on a validation set

()

++++

+++−

i

i

x

x

x

x

i

i

Rix

xiixxi
PQ

bbpq

pqbbr

2

4

2

3

2

2

2

1

2

),(,

)(min

60

0,885

0,89

0,895

0,9

0,905

0,91

0,915

0,92

1 10 100 1000

R
M

S
E

Millions of parameters

CF (no time bias)

Basic Latent Factors

Latent Factors w/ Biases

Grand Prize: 0.8563

Netflix: 0.9514

Movie average: 1.0533

User average: 1.0651

Global average: 1.1296

Basic Collaborative filtering: 0.94

Latent factors: 0.90

Latent factors+Biases: 0.89

Collaborative filtering++: 0.91

61

 Sudden rise in the
average movie rating
(early 2004)
▪ Improvements in Netflix
▪ GUI improvements
▪ Meaning of rating changed

 Movie age
▪ Users prefer new movies

without any reasons
▪ Older movies are just

inherently better than
newer ones

62

Y. Koren, Collaborative filtering with

temporal dynamics, KDD ’09

 Original model:
rxi = +bx + bi + qi ·px

 Add time dependence to biases:
rxi = +bx(t)+ bi(t) +qi · px

▪ Make parameters bx and bi to depend on time

▪ (1) Parameterize time-dependence by linear trends
(2) Each bin corresponds to 10 consecutive weeks

 Add temporal dependence to factors

▪ px(t)… user preference vector on day t

63Y. Koren, Collaborative filtering with temporal dynamics, KDD ’09

64

0,875

0,88

0,885

0,89

0,895

0,9

0,905

0,91

0,915

0,92

1 10 100 1000 10000

R
M

S
E

Millions of parameters

CF (no time bias)

Basic Latent Factors

CF (time bias)

Latent Factors w/ Biases

+ Linear time factors

+ Per-day user biases

+ CF

Grand Prize: 0.8563

Netflix: 0.9514

Movie average: 1.0533

User average: 1.0651

Global average: 1.1296

Basic Collaborative filtering: 0.94

Latent factors: 0.90

Latent factors+Biases: 0.89

Collaborative filtering++: 0.91

65

Latent factors+Biases+Time: 0.876

Still no prize!

Getting desperate.

Try a “kitchen

sink” approach!

 Ensemble team formed
▪ Group of other teams on leaderboard forms a new team

▪ Relies on combining their models

▪ Quickly also get a qualifying score over 10%

 BellKor
▪ Continue to get small improvements in their scores

▪ Realize that they are in direct competition with Ensemble

 Strategy
▪ Both teams carefully monitoring the leaderboard

▪ Only sure way to check for improvement is to submit a set
of predictions
▪ This alerts the other team of your latest score

66

 Submissions limited to 1 a day
▪ Only 1 final submission could be made in the last 24h

 24 hours before deadline…
▪ BellKor team member in Austria notices (by chance) that

Ensemble posts a score that is slightly better than BellKor’s

 Frantic last 24 hours for both teams
▪ Much computer time on final optimization
▪ Carefully calibrated to end about an hour before deadline

 Final submissions
▪ BellKor submits a little early (on purpose), 40 mins before

deadline
▪ Ensemble submits their final entry 20 mins later
▪ ….and everyone waits….

67

68

69

 The winner of the Netflix Challenge
 Multi-scale modeling of the data:

Combine top level, “regional”
modeling of the data, with
a refined, local view:
▪ Global:
▪ Overall deviations of users/movies

▪ Factorization:
▪ Addressing “regional” effects

▪ Collaborative filtering:
▪ Extract local patterns

70

Global effects

Factorization

Collaborative

filtering

