Mining Massive Datasets

Lecture 4

Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: <u>http://www.mmds.org</u>.

Repetition: Contrasting Recommendation Methods

Last Lecture vs. Today

- We have already seen two approaches to recommender systems:
 - A. Collaborative filtering
 - B. Content-based recommenders

- Today:
 - C. Latent factor models

Item-Item Collaborative Filtering

users

 $S = \{3, 6\}$

		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
ms	3	2	4		1	2		3		4	3	5		<u>0.41</u>
ite	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	6	1		3		3			2			4		<u>0.59</u>

 Find set S of items similar to item i=1 rated by target user x=5, and predict r₅₁ as a weighted sum of ratings (of this user x) over all items in S

= > Rating r₅₁ is predicted as a weighted sum of other rows (= ratings of similar items by this user)

User-User CF Collaborative Filtering

Find set *Q* of users similar to target user x=5 who have rated item *i* = 1, and predict *r*₅₁ as a weighted sum of ratings for item 1 by all users in *Q* => Rating r_{5,1} is predicted as a weighted sum of other

columns (ratings of similar other users)

Recall: Content-Based Recommendations

- We construct for each item a vector *i* ("item profile") and for each user a vector *x* ("user profile")
 - Item profile i: k "natural" attributes of an item
 - User vector x: a combination of item profiles for <u>similar</u> items rated by this user (also a k-vector)
- Prediction heuristic:
 - A content-based prediction r_{xi} is approximated as similarity of these two k-vectors: $r_{xi} = u(x, i)$
 - I.e., given a user profile x and item profile i, estimate their similarity as:

$$\boldsymbol{u}(\boldsymbol{x},\boldsymbol{i}) = \cos(\boldsymbol{x},\boldsymbol{i}) = \frac{\boldsymbol{x}\cdot\boldsymbol{i}}{||\boldsymbol{x}||\cdot||\boldsymbol{i}||}$$

Content-Based R.: Interpretation

- In content-based recommendation, we represented each item and each user as a vector in a k-dimensional space
- = > Item i close to a user x gets a high recommendation rating

C. Latent Factor Models

Merging Content-Based and CF Methods

Content-based: each rating is a product of two k-vectors "outside" the utility matrix CF: each rating is a weighted sum of other ratings from the utility matrix

$$\therefore ? = \frac{p_x \cdot q_i}{\|p_x\| \cdot \|q_i\|} = C_{x,i} \cdot \begin{bmatrix} p_{x,1} \\ \vdots \\ p_{x,k} \end{bmatrix} \cdot \begin{bmatrix} q_{i,1} \\ \vdots \\ q_{i,k} \end{bmatrix}$$

Can we combine both worlds: => product of vectors from UM?

Improving Content-Based Approach

users

- Representing each item by a k-vector q_i and each user by k-vector p_x is a promising idea
- But can we replace hand-crafted item-profiles by (new) synthetic profiles derived from the utility matrix?
 - Similarly, for user profiles?

Latent Factor Models

Other view: factorize the utility matrix R

= represent as product of two "thin" matrices)

- Let's assume we can approximate the utility matrix *R* as a product of "thin" *Q* · *P*^T
- R has missing entries but let's ignore that for now
 - We want the reconstruction error to be <u>small on known ratings</u>
 - We don't care about the values on the missing ones

Ratings as Products of Factors

Prediction: estimating the missing rating of user x for item i

Ratings as Products of Factors

Prediction: estimating the missing rating of user **x** for item **i** users $\hat{r}_{xi} = q_i \cdot p_x$

	USERS											
rs	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
• Icto	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

 $= \sum_{\substack{f \\ q_i = row \ i \text{ of } Q \\ p_x = column \ x \text{ of } P^T}} q_i = row \ i \text{ of } Q$

Latent Factor Models

Finding the Latent Factors

Evaluating Predictions

- How to compare predictions with known ratings?
- Root-mean-square error (RMSE), details: <u>link</u>

$$\sqrt{\frac{1}{N}\sum_{xi}(r_{xi}-r_{xi}^*)^2}$$

- where r_{xi} is predicted, r_{xi}^* is the true rating of x on i,
- N is the number of ratings (= # of (x,i) combinations)
- Assume that number of ratings N is fixed
- Equivalent to this this is sum-of-squared-errors (SSE):

•
$$\sum_{xi} (r_{xi} - r_{xi}^*)^2$$

Why equivalent?

Latent Factor Models

• Our goal is to find matrices P and Q such which minimize SSE: $\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x)^2$

items

.6

.3

2.1

2.1

.7

.5

.5

.3

-2

.3

users

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

PT

Minimizing a function

- A simple way to minimize a function f(x):
 - Compute a derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: y = y − ∇f(y)

ν

 $f(y) + \nabla f(y)$

Back to Our Problem

- We want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - We want a large k (# of factors) to capture all complexity
 - But, SSE on test data begins to rise for k > 2
- Why?
- This is a classic example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting to irrelevant details
 - That is it fits too well the training data and thus not generalize well to unseen test data

1	3	4			
	3	5			5
		4	5		5
		3			
		3			
2			?		?
				?	
	2	1			?
	3			?	
1					

Overfitting = Fitting to Irrelevant Details

How could an *overfitting AI* interpret these signs?

- Red cars are not allowed to overtake black cars
- Red "square" tracks are not allowed to overtake black cars

Avoiding Overfitting

- To solve overfitting we introduce **regularization**:
 - Allow <u>rich</u> model where there are <u>sufficient data</u>
 - Use <u>scarce</u> model where <u>data quantity is low</u>
- What is a rich/scarce model in our case?
 - For a user x we control factors in p_x (for item i: q_i)
- Scarce model could be:
 - for user x: lot of zeros in p_x
 - For item i: lot of zeros in q_i
- But function "number of zeros" is hard to optimize
- => Use squared norm: $||p_x||^2 = p_{x,1}^2 + \dots + p_{x,k}^2$
 - A fair approximation of "number of zeros"

Avoiding Overfitting

Regularization:

- Allow rich model where there are sufficient data
- Shrink model where data are scarce

 λ_1, λ_2 ... user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we want P, Q that achieve the minimum of the objective

Role of "Length"

- Assume that user x made <u>only 1</u> rating r_{xi}
 - We use a simple model, e.g. $p_x = 0$ as the error term $(r_{xi} - q_i p_x)^2$ is at most r_{xi}^2

= > The regularization "penalty" $||p_x||^2$ is also small

- Assume that user y made <u>100 ratings</u>
 - It make sense to make $p_y \text{ complex } (||p_y||^2 >> 0)$ so that the sum of 100 errors $(r_{yi} - q_i p_y)^2$ remain small
 - Large $||p_y||^2$ is not good for minimizing the objective function but still better than having 100 large errors!
- The same for items i (freq. rated <=> "rich" qi)

The Effect of Regularization

Optimizing by Stochastic Gradient Descent

Example: Fitting a Line

- We want to fit a straight line $w_1 + w_2 x$ in \mathbb{R}^2 to a set of points $(x_1, y_1), \dots, (x_n, y_n)$
- = > Find "best" values for the parameters w₁, w₂
 - Let $w = [w_1, w_2]^T$ is a 2-vector to be optimized
- How to do this? And how we measure how "good" is w?
- I. We introduce an objective function Q(w) to "measure" w:

$$Q(w) = \sum_{i=1}^{n} Q_i(w) = \sum_{i=1}^{n} (w_1 + w_2 x_i - y_i)^2$$

- Q(w) is just a sum of squared errors (SSE) for this w
- What is n?
- 2. We need to minimize Q(w)!

Recall: Minimizing a Function

A simple way to minimize a function Q(x):

- Compute a gradient (derivative) ∇Q of Q
- Start at some point y and evaluate $\nabla Q(y)$
- Make a step in the reverse direction of the gradient: $y = y \nabla Q(y)$

The Gradient Descent Method

- We iterate over values of w until Q(w) does not improve
- At each step, we change w <u>opposite</u> to the direction of "fastest growth" of Q(w)
- We get the direction of "fastest growth" as a gradient ∇Q(w) at a current value of w
 - Gradient of Q(w) in respect to w, all other vars in Q(w) are constant!

Procedure GD(Q(w)) # for minizing of Q(w)

- Input: Objective function Q(w)
 - w is a vector of m parameters to be optimized
- Init: Assign w a start value (may be random)
- <u>Repeat</u> until convergence (e.g. Q(w) gets no smaller): w ≔ w − α∇Q(w)

α is a parameter ("meta-parameter") called learning rate

GD is Like Going Down a Hill

Our current position ≈ w, i.e. current values of all parameters to be optimized (e.g. w = [w₁, w₂]^T)
 "Territory" = surface created by the error function Q in a space with (#parameters)+1 dimensions

Algorithm:

- Repeat until stopping criterion
 - We compute the "tangent vector" $\nabla Q(w)$ at current w
 - i.e. ∇Q(w) is a vector pointing in the direction of the steepest rise from the current position w
 - Then we move (= change w) by some small step αVQ(w) in the opposite direction ...
 - .. and we arrive at a new position $w' = w \alpha \nabla Q(w)$

GD Example – Computing Gradients

Procedure GD(Q(w)) #for minimization of Q(w)

- Input: Objective function Q(w)
 - w is a vector of m parameters to be optimized
- Init: Assign w a start value (may be random)
- Repeat until convergence (e.g. Q(w) gets no smaller):

 $\mathbf{w} \coloneqq \mathbf{w} - \alpha \nabla Q(\mathbf{w})$

• We have $Q(w) = \sum_{i=1}^{n} Q_i(w) = \sum_{i=1}^{n} (w_1 + w_2 x_i - y_i)^2$ • Since $\nabla (P + Q) = \nabla P + \nabla Q$, we have:

$$\nabla Q(w) = \sum_{i=1}^{n} \nabla Q_i(w)$$

$$= \nabla Q_i(w) = \begin{bmatrix} 1^{\text{st}} & \text{derivative of } Q_i(w) & \text{by } w_1 \\ 1^{\text{st}} & \text{derivative of } Q_i(w) & \text{by } w_2 \end{bmatrix}$$

$$= \nabla Q_i(w) = \begin{bmatrix} \frac{dQ_i(w)}{dw_1} \\ \frac{dQ_i(w)}{dw_2} \end{bmatrix} = \begin{bmatrix} 2(w_1 + w_2x_i - y_i) \\ 2(w_1 + w_2x_i - y_i)x_i \end{bmatrix}$$
One such 2-vector for each data point (i=1..n)

Stochastic Gradient Descent /1

- Assume that the objective function Q(w) is a sum $Q(w) = \sum_{i=1}^n Q_i(w)$
 - Typically Q_i(w) comes from i-th training sample
- By linearity of the gradient $\nabla(P + Q) = \nabla P + \nabla Q$
- ... we have $\nabla Q(w) = \sum_{i=1}^{n} \nabla Q_i(w)$

Stochastic Gradient Descent

- Instead of computing <u>all</u> $\nabla Q_1(w), ..., \nabla Q_n(w)$ and then making <u>single</u> step $w \coloneqq w \alpha \nabla Q(w), ...$
- ... we make a step after computing <u>each</u> of the "partial gradients" $\nabla Q_i(w)$

Stochastic Gradient Descent /2

Procedure SGD(Q(w)) #for minimization of Q(w)
Input: Objective function Q(w) = ∑_{i=1}ⁿ Q_i(w)
w is a vector of m parameters to be optimized
Init: Assign w a start value (may be random)
Repeat until convergence: # outer loop
For i = 1 to n: # inner loop

 $\mathbf{w} \coloneqq \mathbf{w} - \beta \nabla Q_i(\mathbf{w})$

Can you replace the double-loop with something else?

Difference GD vs. SGD

- Our <u>exact</u> gradient v (= vector of a steepest ascend) is a sum of 1000s of (imprecise) vectors v¹,...,vⁿ
- Or: an exact "3D map of a hill" is a sum of 1000s of 3D maps, each possibly a bit blurry/imprecise
 Then, in each (inner) iteration step:
 - **GD**: You compute <u>exact</u> gradient v ...
 - SGD: You compute one of the <u>imprecise</u> gradients v^i ...
 - ... and change your position according to this gradient

GD or SGD?

In practice, SGD is much faster!

SGD is a Generic Tool

- SGD is a generic and widely used method
- It can optimize (essentially) any function for which gradients can be computed
- Especially, it can train neural networks in ML
- Some improved versions are used today:
- <u>Adam</u>: uses adaptive learning rate + moving average of gradient
- Others (<u>link</u>):
 - Momentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, AdaMax, Nadam, AMSGrad, ...

From https://openreview.net/pdf?id=Bkg3g2R9FX

Stochastic Gradient Descent for Latent Factors

Recall: Latent Factor Models

Our goal is to find matrices P and Q which minimize SSE + regularization term:

$$\min_{P,Q} \sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

items

Gradient Descent for Latent Factors

We want to find matrices P and Q with:

$$\min_{P,Q} \sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

Gradient decent:

Singular Value Decomposition

a matrix?

How to compute gradient of

Compute gradient of every

element independently!

- Initialize P and Q (using SVD with missing ratings = 0)
- Do gradient descent (iteration step):
 Q ← Q − η · ∇Q
 - $P \eta \cdot \nabla P$, where ∇P is ...(later)
- ∇Q is gradient/derivative of matrix Q: ∇Q = [∇q_{if}] and ∇q_{if} = ∑_{x,i} -2(r_{xi} - q_ip_x)p_{xf} + 2λ₂q_{if} Here q_{if} is entry f of row q_i of matrix Q
 Observation: Computing gradients is slow!

Stochastic Gradient Descent

$$\min_{P,Q} \sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$

Gradient Descent (GD) vs. Stochastic GD

- Instead of evaluating gradient over all ratings evaluate it for an individual rating and make a step
- GD: $Q \leftarrow Q \eta \left[\sum_{r_{xi}} \nabla Q_{xi}(r_{xi}) \right]$
- SGD: $Q \leftarrow Q \mu \nabla Q_{xi}(r_{xi})$ = $\varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x)$ = $q_i \leftarrow q_i + \mu_1(\varepsilon_{xi} p_x - \lambda_2 q_i)$

for one r_{xi} at a time (derivative of the "error") (update equation)

 SGD: We need more steps but each step is computed much faster

SGD for LF – Full Algorithm

Stochastic gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Iterate over the ratings (multiple times if necessary) and update matrices P and Q:

Step: for each r_{xi} ...

•
$$\varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x)$$

$$q_i \leftarrow q_i + \mu_1 \left(\varepsilon_{xi} p_x - \lambda_2 q_i \right)$$

 $= p_x \leftarrow p_x + \mu_2 (\varepsilon_{xi} q_i - \lambda_1 p_x) \quad \text{(update equation)}$

μ_1, μ_2 are learning rates

(derivative of the "error")

- (update equation)

Two loops:

- Repeat until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

Key Numbers $\min_{P,Q} \sum_{(x,i)\in R} (r_{xi} - q_i p_x)^2 + \left| \lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{x} \|q_i\|^2 \right|$

- Q1. How many parameters to optimize are there, and where are they?
- A1. The parameters are entries of P and Q, and so we have (#users)*(#factors)+(#items)*(#factors)
- Q2. How many terms (summands) are there in the 1st term (SSE)? (Why do I ask this?)
- A2. The first term (SSE) has as many entries as there are <u>non-empty</u> ratings in the utility matrix
 - This determines the length of "inner loop"

Pingo Quiz

- Mark true statements (multiple-choice possible)
 - a. If you increase the number of factors in the LF model, then it is advisable to choose larger regularization parameters λ_1 and λ_2 .
 - In SGD (inner) iteration step, we change our position (=parameter choice) only in few selected dimensions; in a GD step, we change position in (possibly) all dims.
 - c. In the SGD for LF model, the number of steps of the inner loop (of SGD) is always (#users)*(#items).
 - d. If your regularization parameters are very large, GD or SGD might give you matrices *P* and *Q* with only 0's.

References

- Yehuda Koren, Robert Bell and Chris Volinsky: Matrix Factorization Techniques for Recommender Systems, IEEE Computer, August 2009, <u>https://ieeexplore.ieee.org/document/5197422</u>
 - Easy-to-read paper on modern recommendation techniques
- Albert Au Yeung, Matrix Factorization: A Simple Tutorial and Implementation in Python, Blog post, 16 September 2010, <u>http://goo.gl/kzoLaO</u>
- Fun: James Surowiecki, The Wisdom of Crowds, Doubleday; Anchor 2004
 - Wikipedia (en): <u>http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds</u>
 - Wikipedia (de): <u>http://de.wikipedia.org/wiki/Die_Weisheit_der_Vielen</u>

Thank you.

Questions?

The Netflix Prize: Introduction

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE) =

$$\sqrt{\frac{1}{|R|}\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2}$$

Netflix's system RMSE: 0.9514

Competition

- 2,700+ teams
- \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

480,000 users Matrix R 17,700 movies

Utility Matrix R: Evaluation

Performance of Various Methods

The Netflix Prize: The Winner

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- *The Sixth Sense* is **0.5** stars above avg.
- Joe rates 0.2 stars below avg.
 ⇒ Baseline estimation: Joe will rate The Sixth Sense 4 stars
 Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - \Rightarrow Final estimate:

Joe will rate The Sixth Sense 3.8 stars

Modeling Biases and Interactions

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

•
$$\mu$$
 = overall mean rating

b_x = bias of user
$$\mathbf{x}$$

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie *i*
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

Example:

- Mean rating: μ = 3.7
- You are a critical reviewer: your ratings are 1 star lower than the mean: b_x = -1
- Star Wars gets a mean rating of 0.5 higher than average movie: b_i = + 0.5
- Predicted rating for you on Star Wars:
 = 3.7 1 + 0.5 = 3.2

Fitting the New Model

• Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit
$$+ \left(\lambda_1 \sum_i ||q_i||^2 + \lambda_2 \sum_x ||p_x||^2 + \lambda_3 \sum_x ||b_x||^2 + \lambda_4 \sum_i ||b_i||^2 \right)$$
A is selected via grid-search on a validation set

Stochastic gradient decent to find parameters

Note: Both biases b_x, b_i as well as interactions q_i, p_x are treated as parameters (we estimate them)

Performance of Various Methods

Performance of Various Methods

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed

Movie age

- Users prefer new movies without any reasons
- Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$\boldsymbol{r}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i + \boldsymbol{q}_i \cdot \boldsymbol{p}_x$$

• Add time dependence to biases: $r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 (2) Each bin corresponds to 10 consecutive weeks
 $b_i(t) = b_i + b_{i,\text{Bin}(t)}$

Add temporal dependence to factors

p_x(t)... user preference vector on day t

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

63

Adding Temporal Effects

Performance of Various Methods

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
- …and everyone waits….

Netflix Prize

Home

Rules

Leaderboard Update

Download

Leaderboard

Showing Test Score. Click here to show quiz score

COMPLETED

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Gra	nd Prize - RMSE = 0.8567 - Winning Te	am: RellKor's Pragn	natic Chaos	_
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8002	J.9	2005 0. 10 2
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Prog	g <u>ress Prize 2008</u> - RMSE = 0.8627 - Wi	nning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	<u>J Dennis Su</u>	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	acmehill	0.8668	9.00	2009-03-21 16:20:50

Progress Prize 2007 - RMSE = 0.8723 - Winning Team: KorBell

Million \$ Awarded Sept 21st 2009

T-	el/
NETFLIX	2009 DATE 09.21.09
AND THE BellKor's Pragmatic Chaos	\$ 1,000,000 ₩ 00/100
EOR The Netflix Prize Red 7	factings

BellKor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movi
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Global effects

Factorization

Collaborative

filtering