Mining Massive Datasets

Lecture o5

Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: <u>http://www.mmds.org</u>.

Recommender Systems

Appendum

Can you Trust Netflix?

- Case "Netflix user Jane Doe against Netflix", 2009
- Netflix wanted to expand its practice of evaluating user data for individualized offers based on profiles
- => Netflix Challenge:
 - Competition in which the user data of approximately from 500,000 users was used
 - This test data was also used for scientific purposes
- However, this data was not really anonymous!
 - People could be identified with regard to their sensitive data, such as sexual orientation, and this became public
- Jane Doe successfully took action against in a *class action lawsuit* to protect her children in the community
- Read the case description here:
 - https://www.wired.com/images_blogs/threatlevel/2009/12/doe-vnetflix.pdf

Latest Approaches

- Web site paperswithcode.com has a great collection of papers, code, and datasets
- For Recommendation Systems see: <u>https://paperswithcode.com/task/recommendation-systems</u>

Benchmarks

These leaderboards are used to track progress in Recommendation

Show all 46 benchmarks

Latest Approaches /2

- You see there more datasets than Netflix:
 - MovieLens 100k,..., 20M, Douban Monti, ReDial, Gowalla, ...
 - ... and best approaches per dataset over time
- E.g. MovieLens 1M

• Other models - Models with lowest RMSE

Link Analysis

Infinite Data

Programming in Spark & MapReduce

Web as a Graph

Web as a directed graph:

Nodes: Webpages

Edges: Hyperlinks

Web as a Graph

Web as a directed graph:

- Nodes: Webpages
- Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

Two challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important" <u>http://endless.horse/</u>vs. <u>www.stanford.edu</u>
- There is large diversity in the web-graph node connectivity
 Let's rank the pages by the link structure!

PageRank

The "Flow" Formulation

Links as Votes

Idea: Links as votes

Page is more important if it has more links

In-coming links? Out-going links?

- Think of in-links as votes:
 - www.stanford.edu has 100,000+ in-links
 - <u>http://endless.horse/</u> has only few in-links
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page *j* with importance *r_j* has *n* out-links, each link gets *r_j* / *n* votes
- Page j's own importance is the sum of the votes on its <u>in-links</u>

$$r_j = r_i/3 + r_k/4$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is *important* if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

Flow equations:

$$r_{y} = r_{y}/2 + r_{a}/2$$
$$r_{a} = r_{y}/2 + r_{m}$$
$$r_{m} = r_{a}/2$$

Solving the Flow Equations

Flow equations:

- 3 equations, 3 unknowns, no constants
 - No unique solution

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

- All solutions are equivalent modulo the scale factor
- Additional constraint forces uniqueness:

•
$$r_y + r_a + r_m = 1$$

• Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix (columns sum to 1)
- Rank vector r: vector with an entry per page
 r_i is the importance score of page i
 \sum_i r_i = 1
 r_j = \sum_{i=1}^{r_i} \frac{r_i}{d_i}
- The flow equations can be written as

$$r = M \cdot r$$

Example

- Remember the flow equation:
- Flow equation in the matrix form

$M \cdot r = r$

Suppose page *i* links to 3 pages, including *j*

Eigenvector Formulation

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

- The flow equations can be written $r = M \cdot r$
- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, it is its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- We can now solve for r!
- To do this efficiently, we use Power iteration

Example: Flow Equations & M

	У	a	m
У	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r = M \cdot r$

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks
 Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,...,1/N]^{T}$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$

 $r_{j}^{(t+1)} = \sum_{i=1}^{k} \frac{r_{i}^{(t)}}{d_{i}}$

• Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

 $d_i \dots$ out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm We can use any other vector norm, e.g., Euclidean

PageRank: How to solve?

Power Iteration:

• Set
$$r_j = 1/N$$

• 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$

Goto 1

Example:

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \frac{1/3}{1/3}$$

Iteration 0, 1, 2, ...

	У	a	m
у	1⁄2	1⁄2	0
a	1⁄2	0	1
m	0	1⁄2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_a = r_y/2 + r_m$ $r_{\rm m} = r_{\rm a}/2$

PageRank: How to solve?

Power Iteration:

• Set
$$r_j = 1/N$$

• 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$

Goto 1

Example:

Iteration 0, 1, 2, ...

	У	a	m
у	1⁄2	1⁄2	0
a	1⁄2	0	1
m	0	1⁄2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - At time t + 1, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
 - Process repeats indefinitely
- Let:
 - *p*(*t*) ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*
 - So, p(t) is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$ $p(t+1) = M \cdot p(t)$
- Suppose the random walk reaches a state $p(t + 1) = M \cdot p(t) = p(t)$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

PageRank: The Google Formulation

PageRank: Three Questions

- Does this (always) converge?
- Does it (always) converge to what we want?
- Are results reasonable?

Does this converge?

Does it converge to what we want?

PageRank: Problems

- 2 problems:
- (1) Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
- (2) Spider traps:
 - (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - And eventually spider traps absorb all importance

Problem: Spider Traps

- Power Iteration:
 - Set $r_j = 1$ • $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

m is a spider trap

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2 + r_{m}$

Example:

All the PageRank score gets "trapped" in node m

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options:
 - With prob. β , follow a link at random
 - With prob. 1β , jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

• Set
$$r_j = 1$$

• $r_j = \sum_{i \to j} \frac{r_i}{d_i}$

And iterate

	У	a	m
у	1⁄2	1⁄2	0
a	1⁄2	0	0
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2$

Example:

$\left(r_{v} \right)$	1/3	2/6	3/12	5/24		0
$ \mathbf{r}_a =$	1/3	1/6	2/12	3/24	• • •	0
r _m	1/3	1/6	1/12	2/24		0
	Iteratio	on 0, 1, 2	,			

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

- Spider-traps are not a problem, but with traps
 PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a "formal" a problem
 - The matrix is <u>not column stochastic</u> so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all: At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1β , jump to a random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \ \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that *M* has no dead ends. We can either **preprocess matrix** *M* **to remove all dead ends** or explicitly follow random teleport links with probability 1.0 from dead-ends.

d_i... out-degree

of node i

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: r = A · r And the Power method still works!
- What is β ?

• In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

У		1/3	0.33	0.24	0.26		7/33
a	=	1/3	0.20	0.20	0.18	• • •	5/33
m		1/3	0.46	0.52	0.56		21/33

PageRank

Why Power Iteration works?

Why Power Iteration works? (1)

Power iteration:

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue) • $r^{(1)} = M \cdot r^{(0)}$

•
$$r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$$

• $r^{(3)} = M \cdot r^{(2)} = M(M^2r^{(0)}) = M^3 \cdot r^{(0)}$

Claim:

Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \dots M^k \cdot r^{(0)}, \dots$ approaches the dominant eigenvector of M

Why Power Iteration works? (2)

- Claim: Sequence M · r⁽⁰⁾, M² · r⁽⁰⁾, ... M^k · r⁽⁰⁾, ... approaches the dominant eigenvector of M
 Proof:
 - Assume **M** has **n** linearly independent eigenvectors, x_1, x_2, \dots, x_n with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, where $\lambda_1 > \lambda_2 > \dots > \lambda_n$
 - Vectors $x_1, x_2, ..., x_n$ form a basis and thus we can write: $r^{(0)} = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$
 - $Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \dots + c_n x_n)$ = $c_1(Mx_1) + c_2(Mx_2) + \dots + c_n(Mx_n)$ = $c_1(\lambda_1 x_1) + c_2(\lambda_2 x_2) + \dots + c_n(\lambda_n x_n)$
 - Repeated multiplication on both sides produces $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

Why Power Iteration works? (3)

- Claim: Sequence M · r⁽⁰⁾, M² · r⁽⁰⁾, ... M^k · r⁽⁰⁾, ... approaches the dominant eigenvector of M
 Proof (continued):
 - Repeated multiplication on both sides produces $M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$

•
$$M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \dots + c_n \left(\frac{\lambda_2}{\lambda_1} \right)^k x_n \right]$$

Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1} \dots < 1$ and so $\left(\frac{\lambda_i}{\lambda_1}\right)^k = 0$ as $k \to \infty$ (for all $i = 2 \dots n$).
Thus: $M^k r^{(0)} \approx c_1 \left(\lambda_1^k x_1\right)$

Note if c₁ = 0 then the method won't converge

Thank you.

Questions?

Additional Slides