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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/


Appendum



 Case “Netflix user Jane Doe against Netflix“, 2009
 Netflix wanted to expand its practice of evaluating user data 

for individualized offers based on profiles
 => Netflix Challenge: 

▪ Competition in which the user data of approximately from 500,000 
users was used

▪ This test data was also used for scientific purposes

 However, this data was not really anonymous!
▪ People could be identified with regard to their sensitive data, such as 

sexual orientation, and this became public

 Jane Doe successfully took action against in a class action 
lawsuit to protect her children in the community

 Read the case description here:
▪ https://www.wired.com/images_blogs/threatlevel/2009/12/doe-v-

netflix.pdf
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 Web site paperswithcode.com has a great 
collection of papers, code, and datasets

 For Recommendation Systems see: 
https://paperswithcode.com/task/recommendation-systems
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 You see there more datasets than Netflix:

▪ MovieLens 100k,…, 20M, Douban Monti, ReDial, 
Gowalla, …

 … and best approaches per dataset over time
 E.g. MovieLens 1M

6





High dim. 
data

Locality 
sensitive 
hashing

Clustering

Dimensio-
nality

reduction

Graph 
data

PageRank, 
SimRank

Community 
Detection

Spam 
Detection

Infinite 
data

Filtering 
data 

streams

Web 
advertising

Queries on 
streams

Machine 
learning

SVM

Decision 
Trees

Perceptron, 
kNN

Apps

Recommen
der systems

Association 
Rules

Duplicate 
document 
detection

8

Programming in Spark & MapReduce



 Web as a directed graph:

▪ Nodes: Webpages

▪ Edges: Hyperlinks
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 How to organize the Web?
 First try: Human curated

Web directories

▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search

▪ Information Retrieval investigates:
Find relevant docs in a small 
and trusted set

▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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Two challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

▪ No single right answer

▪ Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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 All web pages are not equally “important”

http://endless.horse/ vs. www.stanford.edu

 There is large diversity 
in the web-graph 
node connectivity
Let’s rank the pages by 
the link structure!
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http://endless.horse/
http://www.stanford.edu/


The “Flow” Formulation



 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has 100,000+ in-links

▪ http://endless.horse/ has only few in-links

 Are all in-links are equal?

▪ Links from important pages count more

▪ Recursive question! 
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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 3 equations, 3 unknowns, 
no constants

▪ No unique solution

▪ All solutions are equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

 Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓

 Gaussian elimination method works for small examples, 
but we need a better method for large web-size graphs

 We need a new formulation!
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 Stochastic adjacency matrix 𝑀
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

else   𝑀𝑗𝑖 = 0

▪ 𝑴 is a column stochastic matrix (columns sum to 1)

 Rank vector 𝑟: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖
▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written as 

𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j

23

j

i

M r r

=
rj

1/3


→

=
ji

i
j

r
r

id

ri

.

. =



 The flow equations can be written 
𝒓 = 𝑴 ∙ 𝒓

 So the rank vector r is an eigenvector of the 
stochastic web matrix M
▪ In fact, it is its first or principal eigenvector, with 

corresponding eigenvalue 1

▪ Largest eigenvalue of M is 1 since M is
column stochastic (with non-negative entries)
▪ We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏

 We can now solve for r!
 To do this efficiently, we use Power iteration
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r = M∙r

y       ½    ½    0     y

a   =  ½     0    1     a

m       0    ½    0    m
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 Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme

▪ Suppose there are N web pages

▪ Initialize: r(0) = [1/N,….,1/N]T

▪ Iterate: r(t+1) = M ∙ r(t)

▪ Stop when |r(t+1) – r(t)|1 < 
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 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0
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 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0
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 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓

▪ So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp =+

j

i1 i2 i3
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what 
the initial probability distribution at time t = 0
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The Google Formulation



 Does this (always) converge?

 Does it (always) converge to what we 
want?

 Are results reasonable?
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 Example:
ra 1 0 1 0

rb 0 1 0 1
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 Example:
ra 1 0 0 0

rb 0 1 0 0
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps: 
(all out-links are within the group)

▪ Random walked gets “stuck” in a trap

▪ And eventually spider traps absorb all importance
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 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m



 The Google solution for spider traps: At each 
time step, the random surfer has two options:

▪ With prob. 𝛽, follow a link at random

▪ With prob. 1 − 𝛽, jump to some random page

▪ Common values for 𝛽 are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
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y

a m

y a m
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a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

▪ Adjust matrix accordingly
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 Spider-traps are not a problem, but with traps 
PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a “formal” a problem

▪ The matrix is not column stochastic so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability 𝛽,  follow a link at random

▪ With probability 1 − 𝛽, jump to a random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 
preprocess matrix 𝑴 to remove all dead ends or explicitly follow 

random teleport links with probability 1.0 from dead-ends.



 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have a recursive problem: 𝑟 = 𝐴 ⋅ 𝑟
And the Power method still works!

 What is  ?

▪ In practice  =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix

where all entries are 1/N



y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20
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. . .
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y   7/15  7/15   1/15

a   7/15  1/15   1/15
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Why Power Iteration works?



 Power iteration: 
A method for finding dominant eigenvector (the 
vector corresponding to the largest eigenvalue)

▪ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

▪ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟏 = 𝑴𝟐 ⋅ 𝒓 𝟎

▪ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

 Claim:

Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴
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 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

 Proof:
▪ Assume M has n linearly independent eigenvectors, 
𝑥1, 𝑥2, … , 𝑥𝑛 with corresponding eigenvalues 
𝜆1, 𝜆2, … , 𝜆𝑛, where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛

▪ Vectors 𝑥1, 𝑥2, … , 𝑥𝑛 form a basis and thus we can write: 
𝑟(0) = 𝑐1 𝑥1 + 𝑐2 𝑥2 +⋯+ 𝑐𝑛 𝑥𝑛

▪ 𝑴𝒓(𝟎) = 𝑴 𝒄𝟏 𝒙𝟏 + 𝒄𝟐 𝒙𝟐 +⋯+ 𝒄𝒏 𝒙𝒏
= 𝑐1(𝑀𝑥1) + 𝑐2(𝑀𝑥2) + ⋯+ 𝑐𝑛(𝑀𝑥𝑛)
= 𝑐1(𝜆1𝑥1) + 𝑐2(𝜆2𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛𝑥𝑛)

▪ Repeated multiplication on both sides produces
𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)
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 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

 Proof (continued):
▪ Repeated multiplication on both sides produces
𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)

▪ 𝑀𝑘𝑟(0) = 𝜆1
𝑘 𝑐1𝑥1 + 𝑐2

𝜆2

𝜆1

𝑘

𝑥2 +⋯+ 𝑐𝑛
𝜆2

𝜆1

𝑘

𝑥𝑛

▪ Since 𝜆1 > 𝜆2 then fractions 
𝜆2

𝜆1
,
𝜆3

𝜆1
… < 1

and so 
𝜆𝑖

𝜆1

𝑘

= 0 as 𝑘 → ∞ (for all 𝑖 = 2…𝑛).

▪ Thus: 𝑴𝒌𝒓(𝟎) ≈ 𝒄𝟏 𝝀𝟏
𝒌𝒙𝟏

▪ Note if 𝑐1 = 0 then the method won’t converge
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Details!



Questions?




