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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/


Appendum



 Case “Netflix user Jane Doe against Netflix“, 2009
 Netflix wanted to expand its practice of evaluating user data 

for individualized offers based on profiles
 => Netflix Challenge: 

▪ Competition in which the user data of approximately from 500,000 
users was used

▪ This test data was also used for scientific purposes

 However, this data was not really anonymous!
▪ People could be identified with regard to their sensitive data, such as 

sexual orientation, and this became public

 Jane Doe successfully took action against in a class action 
lawsuit to protect her children in the community

 Read the case description here:
▪ https://www.wired.com/images_blogs/threatlevel/2009/12/doe-v-

netflix.pdf
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 Web site paperswithcode.com has a great 
collection of papers, code, and datasets

 For Recommendation Systems see: 
https://paperswithcode.com/task/recommendation-systems
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https://paperswithcode.com/task/recommendation-systems


 You see there more datasets than Netflix:

▪ MovieLens 100k,…, 20M, Douban Monti, ReDial, 
Gowalla, …

 … and best approaches per dataset over time
 E.g. MovieLens 1M
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Programming in Spark & MapReduce



 Web as a directed graph:

▪ Nodes: Webpages

▪ Edges: Hyperlinks
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 How to organize the Web?
 First try: Human curated

Web directories

▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search

▪ Information Retrieval investigates:
Find relevant docs in a small 
and trusted set

▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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Two challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

▪ No single right answer

▪ Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers

13



 All web pages are not equally “important”

http://endless.horse/ vs. www.stanford.edu

 There is large diversity 
in the web-graph 
node connectivity
Let’s rank the pages by 
the link structure!
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http://endless.horse/
http://www.stanford.edu/


The “Flow” Formulation



 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has 100,000+ in-links

▪ http://endless.horse/ has only few in-links

 Are all in-links are equal?

▪ Links from important pages count more

▪ Recursive question! 
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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 3 equations, 3 unknowns, 
no constants

▪ No unique solution

▪ All solutions are equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

 Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓

 Gaussian elimination method works for small examples, 
but we need a better method for large web-size graphs

 We need a new formulation!
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Flow equations:
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 Stochastic adjacency matrix 𝑀
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

else   𝑀𝑗𝑖 = 0

▪ 𝑴 is a column stochastic matrix (columns sum to 1)

 Rank vector 𝑟: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖
▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written as 

𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j
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 The flow equations can be written 
𝒓 = 𝑴 ∙ 𝒓

 So the rank vector r is an eigenvector of the 
stochastic web matrix M
▪ In fact, it is its first or principal eigenvector, with 

corresponding eigenvalue 1

▪ Largest eigenvalue of M is 1 since M is
column stochastic (with non-negative entries)
▪ We know r is unit length and each column of M

sums to one, so 𝑴𝒓 ≤ 𝟏

 We can now solve for r!
 To do this efficiently, we use Power iteration
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NOTE: x is an 

eigenvector with 

the corresponding 

eigenvalue λ if:

𝑨𝒙 = 𝝀𝒙



r = M∙r

y       ½    ½    0     y

a   =  ½     0    1     a

m       0    ½    0    m
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 Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks

 Power iteration: a simple iterative scheme

▪ Suppose there are N web pages

▪ Initialize: r(0) = [1/N,….,1/N]T

▪ Iterate: r(t+1) = M ∙ r(t)

▪ Stop when |r(t+1) – r(t)|1 < 
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|x|1 = 1≤i≤N|xi| is the L1 norm 

We can use any other vector norm, e.g., Euclidean



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

 Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓

▪ So, 𝒓 is a stationary distribution for 
the random walk

)(M)1( tptp =+

j

i1 i2 i3
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what 
the initial probability distribution at time t = 0
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The Google Formulation



 Does this (always) converge?

 Does it (always) converge to what we 
want?

 Are results reasonable?
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 Example:
ra 1 0 1 0

rb 0 1 0 1
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 Example:
ra 1 0 0 0

rb 0 1 0 0
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps: 
(all out-links are within the group)

▪ Random walked gets “stuck” in a trap

▪ And eventually spider traps absorb all importance
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Dead end



 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

39

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m



 The Google solution for spider traps: At each 
time step, the random surfer has two options:

▪ With prob. 𝛽, follow a link at random

▪ With prob. 1 − 𝛽, jump to some random page

▪ Common values for 𝛽 are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

▪ Adjust matrix accordingly
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 Spider-traps are not a problem, but with traps 
PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a “formal” a problem

▪ The matrix is not column stochastic so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability 𝛽,  follow a link at random

▪ With probability 1 − 𝛽, jump to a random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 
preprocess matrix 𝑴 to remove all dead ends or explicitly follow 

random teleport links with probability 1.0 from dead-ends.



 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have a recursive problem: 𝑟 = 𝐴 ⋅ 𝑟
And the Power method still works!

 What is  ?

▪ In practice  =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix

where all entries are 1/N



y

a    =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .
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13/15

7/15

1/2 1/2   0

1/2   0    0

0   1/2   1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A



Why Power Iteration works?



 Power iteration: 
A method for finding dominant eigenvector (the 
vector corresponding to the largest eigenvalue)

▪ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

▪ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟏 = 𝑴𝟐 ⋅ 𝒓 𝟎

▪ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

 Claim:

Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

50

Details!



 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

 Proof:
▪ Assume M has n linearly independent eigenvectors, 
𝑥1, 𝑥2, … , 𝑥𝑛 with corresponding eigenvalues 
𝜆1, 𝜆2, … , 𝜆𝑛, where 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑛

▪ Vectors 𝑥1, 𝑥2, … , 𝑥𝑛 form a basis and thus we can write: 
𝑟(0) = 𝑐1 𝑥1 + 𝑐2 𝑥2 +⋯+ 𝑐𝑛 𝑥𝑛

▪ 𝑴𝒓(𝟎) = 𝑴 𝒄𝟏 𝒙𝟏 + 𝒄𝟐 𝒙𝟐 +⋯+ 𝒄𝒏 𝒙𝒏
= 𝑐1(𝑀𝑥1) + 𝑐2(𝑀𝑥2) + ⋯+ 𝑐𝑛(𝑀𝑥𝑛)
= 𝑐1(𝜆1𝑥1) + 𝑐2(𝜆2𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛𝑥𝑛)

▪ Repeated multiplication on both sides produces
𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)
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Details!



 Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

 Proof (continued):
▪ Repeated multiplication on both sides produces
𝑀𝑘𝑟(0) = 𝑐1(𝜆1

𝑘𝑥1) + 𝑐2(𝜆2
𝑘𝑥2) + ⋯+ 𝑐𝑛(𝜆𝑛

𝑘𝑥𝑛)

▪ 𝑀𝑘𝑟(0) = 𝜆1
𝑘 𝑐1𝑥1 + 𝑐2

𝜆2

𝜆1

𝑘

𝑥2 +⋯+ 𝑐𝑛
𝜆2

𝜆1

𝑘

𝑥𝑛

▪ Since 𝜆1 > 𝜆2 then fractions 
𝜆2

𝜆1
,
𝜆3

𝜆1
… < 1

and so 
𝜆𝑖

𝜆1

𝑘

= 0 as 𝑘 → ∞ (for all 𝑖 = 2…𝑛).

▪ Thus: 𝑴𝒌𝒓(𝟎) ≈ 𝒄𝟏 𝝀𝟏
𝒌𝒙𝟏

▪ Note if 𝑐1 = 0 then the method won’t converge
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Details!



Questions?




