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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/
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Programming in Spark & MapReduce



Recalling the most important 
facts from Lecture 5



 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rrec for page rec

5

𝑟𝑟𝑒𝑐 = 

𝑠𝑒𝑛𝑑𝑒𝑟→𝑟𝑒𝑐
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𝒅𝒔𝒆𝒏𝒅𝒆𝒓 … out-degree of node 𝒔𝒆𝒏𝒅𝒆𝒓

Flow equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Adjacency matrix 𝑀
▪ Encodes the structure of the web graphl
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

else   𝑀𝑗𝑖 = 0

 Rank vector 𝑟: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖
▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written as 

𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j
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 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have now a recursive problem: 𝑟 = 𝐴 ⋅ 𝑟
 Solve using the power iteration method:
▪ (1) Init r(0) ; (2) Iterate: r(t+1) = M ∙ r(t)

▪ (3) Stop when |r(t+1) – r(t)|1 < 
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[1/N]NxN…N by N matrix

where all entries are 1/N



How do we actually compute 
the PageRank?



 Indexed Web contains at least 2.1 billion 
pages (Monday, 21 November, 2022)

▪ Data by Tilburg University (updated daily)

 The actual size seems to be >50 billion pages
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GB = Sorted on Google and Bing

BG = Sorted on Bing and Google

Source: https://www.worldwidewebsize.com/

https://www.worldwidewebsize.com/


 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to hold 
A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for 

each entry (say)
▪ 2 billion entries for 

vectors, approx 8GB
▪ Matrix A has N2 entries
▪ 1018 is a large number!

▪ Insight: M is sparse, A is not!
▪ Goal: Find a recursive update step

which uses only sparse matrices!
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 Suppose there are N pages
 Consider page i, with di out-links
 We have Mji = 1/|di| when i → j

and Mji = 0 otherwise
 The random teleport is equivalent to:
▪ Adding a teleport link from i to every other page 

and setting transition probability to (1-)/N

▪ Reducing the probability of following each 
out-link from 1/|di| to /|di|

▪ Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 
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 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗 = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

 𝑟𝑗 = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖 # use def of 𝐴𝑗𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1
𝑁 𝑟𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
# use σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
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[x]N … a vector  of length N with all entries x
Note: Here we assumed M

has no dead-ends for σ𝑟𝑖 = 1



 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N (= const)

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10N entries
 So in each iteration, we need to:
▪ Compute rnew =  M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note: if M contains dead-ends then σ𝑗 𝑟𝑗
𝑛𝑒𝑤 < 1 and 

we also have to renormalize rnew so that it sums to 1
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 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

▪ A. ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
(this is 𝜷𝑴 ⋅ 𝒓)

𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ B. Re-insert the “leaked” (due to 𝜷 and dead ends) PageRank:

∀𝑗: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+

𝟏−𝜷𝑺

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘
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where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤 (after step A)

If the graph has no dead-ends then the amount of “leaked” PageRank is 1-β. But since we have dead-ends the 
amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.



Computing the PageRank with 
Memory Constraints



 Encode sparse matrix using only nonzero 
entries

▪ Space proportional roughly to number of links

▪ Say 10N => (4 bytes)*10*10 billion = 400GB

▪ Still won’t fit in memory, but will fit on disk

▪ In 2022: 1 TB RAM server ~20k EUR => all in RAM
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 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 Now one iteration (step A) of power iteration is:
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rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

Read into memory: i, di, dest1, …, destdi, rold(i)

For j = 1…di                                             (this is 𝜷𝑴⋅𝒓)

rnew(destj) +=  rold(i) / di

Assume that

𝑆 =

𝑗

𝑟′𝑗
𝑛𝑒𝑤 = 1

to simplify, i.e. 
no step B (=
no dead-ends)



 Assume enough RAM to fit rnew into memory

▪ Store rold and matrix M on disk

 In each iteration, we have to:

▪ Read rold and M

▪ Write rnew back to disk

▪ Cost per iteration of Power method:
= 2|r| + |M|

 Question:

▪ What if we could not even fit rnew in memory?
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▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block
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 Similar to nested-loop join in databases

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

 Total cost:

▪ k scans of M and rold

▪ Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?

▪ Hint: M is much bigger than r (approx 10-20x), so 
we must avoid reading it k times per iteration
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2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only 

destination nodes in the corresponding block of rnew



 Break M into stripes

▪ Each stripe contains only destination nodes 
in the corresponding block of rnew

 Some additional overhead per stripe

▪ But it is usually worth it

 => Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|
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 Measures generic popularity of a page

▪ Biased against topic-specific authorities

▪ Solution: Topic-Specific PageRank 

 Uses a single measure of importance

▪ Other models of importance

▪ Solution: Hubs-and-Authorities

 Susceptible to Link spam

▪ Artificial link topographies created in order to 
boost page rank

▪ Solution: TrustRank
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(Short)



 Instead of generic popularity, can we 
measure popularity within a topic?

 Goal: Evaluate Web pages not just according 
to their popularity, but by how close they are 
to a particular topic, e.g. “sports” or “history”

 Allows search queries to be answered based 
on interests of the user

▪ Example: Query “Trojan” wants different pages 
depending on whether you are interested in 
sports, history and computer security
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 Random walker has a small probability of 
teleporting at any step

 Teleport can go to:
▪ Standard PageRank: Any page with equal probability
▪ To avoid dead-end and spider-trap problems

▪ Topic Specific PageRank: A topic-specific set of 
“relevant” pages (teleport set)

 Idea: Bias the random walk
▪ When walker teleports, she pick a page from a set S

▪ S contains only pages that are relevant to the topic
▪ E.g., Open Directory (DMOZ) pages for a given topic/query

▪ For each teleport set S, we get a different vector rS
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 To make this work all we need is to update the 
teleportation part of the PageRank formulation: 

𝑨𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝑖 ∈ 𝑆

𝜷𝑴𝒊𝒋 + 𝟎 otherwise

▪ A is stochastic!

▪ We weighted all pages in the teleport set S equally, 
but this can be changed

 Compute as for regular PageRank:

▪ Multiply by M, then add a vector

▪ Maintains sparseness
28
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2 3

4

Suppose S = {1},  = 0.8

Node Iteration

0 1 2     … stable

1 0.25 0.4 0.28 0.294

2 0.25 0.1 0.16 0.118

3 0.25 0.3 0.32 0.327

4 0.25 0.2 0.24 0.261

0.2

0.5
0.5

1

1 1

0.4 0.4

0.8

0.8 0.8
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S={1,2,3,4},  β=0.8:

r=[0.13, 0.10, 0.39, 0.36]

S={1,2,3} ,  β=0.8:

r=[0.17, 0.13, 0.38, 0.30]

S={1,2} ,  β=0.8:

r=[0.26, 0.20, 0.29, 0.23]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.90:

r=[0.17, 0.07, 0.40, 0.36]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.70:

r=[0.39, 0.14, 0.27, 0.19]



 Create different PageRanks for different topics
▪ The 16 DMOZ top-level categories:
▪ arts, business, sports,…

 Which topic ranking to use?

▪ User can pick from a menu

▪ Classify query into a topic

▪ Can use the context of the query

▪ E.g., query is launched from a web page talking about a 
known topic

▪ History of queries e.g., “basketball” followed by “Jordan”

▪ User context, e.g., user’s bookmarks, …
30



 Mark true statements (multiple are possible)

1. If we cannot fit the “new” rank vector into RAM, 
we get only approximate result for rnew = A ∙ rold

2. In the „Block-based Update Algorithm“ we don‘t
need to preprocess „link matrix M“ before start

3. The “Block-Stripe Update Algorithm” stores the 
targets of some links in a redundant way

4. In the “Topic-Specific PageRank”, pages not in the 
teleport set S have smaller prob. as teleport goals
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Link: https://pingo.coactum.de/147633
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https://pingo.coactum.de/147633


Spam Farming



 Spamming:
▪ Any deliberate action to boost a web 

page’s position in search engine results, 
incommensurate with page’s real value

 Spam:
▪ Web pages that are the result of spamming

 This is a very broad definition
▪ SEO industry might disagree!

▪ SEO = search engine optimization

 Approximately 10-15% of web pages are spam
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 Once Google became the dominant search 
engine, spammers began to work out ways to 
fool Google

 Spam farms were developed to concentrate 
PageRank on a single page

 Link spam:

▪ Creating link structures that  
boost PageRank of a particular 
page
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SPAM  FARMING



 Three kinds of web pages from a 
spammer’s point of view

▪ Inaccessible pages

▪ Visible but controlled by non-spammers

▪ Accessible pages

▪ e.g., blog comments pages

▪ spammer can post links to his pages

▪ Owned pages

▪ Completely controlled by spammer

▪ May span multiple domain names
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 Spammer’s goal:

▪ Maximize the PageRank of target page t

 Technique:

▪ Get as many links from accessible pages as 
possible to target page t

▪ Construct “link farm” to get PageRank 
multiplier effect
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Inaccessible

t

Accessible Owned

1

2

M

One of the most common and effective 
organizations for a link farm

Millions of 

farm pages



 x: PageRank contributed by accessible pages
 y: PageRank of target page t

 Rank of each “farm” page =
𝛽𝒚

𝑀
+

1−𝛽

𝑁

 𝒚 = 𝑥 + 𝛽𝑀
𝛽𝑦

𝑀
+

1−𝛽

𝑁
+

1−𝛽

𝑁

= 𝑥 + 𝛽2𝑦 +
𝛽 1−𝛽 𝑀

𝑁
+

1−𝛽

𝑁

 𝒚 =
𝒙

𝟏−𝜷𝟐
+ 𝒄

𝑴

𝑵
where 𝑐 =

𝛽

1+𝛽

Very small; ignore

Now we solve for y
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N…# pages on the web

M…# of pages spammer 

owns (not a matrix!)

Inaccessible

t
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 𝒚 =
𝒙

𝟏−𝜷𝟐
+ 𝒄

𝑴

𝑵
where 𝑐 =

𝛽

1+𝛽

 For  = 0.85, 1/(1-2)= 3.6

 𝒙 estimates the multiplier effect for acquired 
PageRank; only partially controlled!

 But: By making M large, we can make y as 
large as we want!
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N…# pages on the web
M…# of pages 
spammer owns
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Combating the Web Spam



 Combating term spam

▪ Analyze text using statistical methods

▪ Similar to email spam filtering

▪ Also useful: Detecting approximate duplicate pages

 Combating link spam:
 Detection and blacklisting of structures that look 

like spam farms

▪ Leads to another war – hiding and detecting spam farms

 Better: TrustRank = topic-specific PageRank with a 
teleport set of trusted pages

▪ Example: .edu domains, similar domains for non-US 
schools
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 Basic principle: Approximate isolation

▪ It is rare for a “good” page to point to a “bad” 
(spam) page

 Sample a set of seed pages from the web

 Have an oracle (human) to identify the good 
pages and the spam pages in the seed set

▪ Expensive task, so we must make seed set as 
small as possible
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 Call the subset of seed pages that are 
identified as good the trusted pages

 Key idea: Perform a (topic-sensitive) 
PageRank with teleport set = trusted pages

▪ Propagate trust through links:

▪ Each page gets a trust value between 0 and 1

 Option 1: Use a threshold value and mark all 
pages below the trust threshold as spam
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 Set trust of each trusted page to 1
 Suppose trust of page p is tp

▪ Page p has a set of out-links op

 For each qop, p confers the trust to q
▪  tp /|op| for  0 < < 1

 Trust is additive 
▪ Trust of p is the sum of the trust conferred 

on p by all its in-linked pages
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 Trust attenuation:

▪ The degree of trust conferred by a trusted page 
decreases with the distance in the graph

 Trust splitting:

▪ The larger the number of out-links from a page, 
the less scrutiny the page author gives each out-
link

▪ Trust is split across out-links
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 Two conflicting considerations:

▪ Human has to inspect each seed page, so seed set 
must be as small as possible

▪ Must ensure every good page gets adequate trust 
rank, so need make all good pages reachable from 
seed set by short paths
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 Suppose we want to pick a seed set of k pages
 How to do that?
 (1) PageRank:

▪ Pick the top k pages by PageRank

▪ Theory is that you can’t get a bad page’s rank 
really high

 (2) Use trusted domains whose membership 
is controlled, like .edu, .mil, .gov
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 In the TrustRank model, we start with good 
pages and propagate trust

 Complementary view: 
What fraction of a page’s PageRank comes 
from spam pages?

 In practice, we don’t know all 
the spam pages, so we need 
to estimate
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Web

Trusted 
set



Option 2:
 𝒓𝒑 = PageRank of page p
 𝒓𝒑

+ = PageRank of p with teleport into trusted
pages only

 Then: What fraction of a page’s PageRank comes 
from spam pages?
𝒓𝒑
− = 𝒓𝒑 − 𝒓𝒑

+

 Spam mass of p = 
𝒓𝒑
−

𝒓𝒑
▪ Pages with high spam mass

are spam
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Trusted 
set

Web



Questions?


