
Lecture 06

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

3

Programming in Spark & MapReduce

Recalling the most important
facts from Lecture 5

 A “vote” from an important
page is worth more

 A page is important if it is
pointed to by other important
pages

 Define a “rank” rrec for page rec

5

𝑟𝑟𝑒𝑐 =

𝑠𝑒𝑛𝑑𝑒𝑟→𝑟𝑒𝑐

𝑟𝑠𝑒𝑛𝑑𝑒𝑟
d𝑠𝑒𝑛𝑑𝑒𝑟

y

ma
a/2

y/2
a/2

m

y/2

𝒅𝒔𝒆𝒏𝒅𝒆𝒓 … out-degree of node 𝒔𝒆𝒏𝒅𝒆𝒓

Flow equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

 Adjacency matrix 𝑀
▪ Encodes the structure of the web graphl
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then 𝑀𝑗𝑖 =
1

𝑑
𝑖

else 𝑀𝑗𝑖 = 0

 Rank vector 𝑟: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖
▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written as

𝒓 = 𝑴 ⋅ 𝒓

6

→

=
ji

i
j

r
r

id

 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j

7

j

i

M r r

=
rj

1/3

→

=
ji

i
j

r
r

id

ri

.

. =

 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have now a recursive problem: 𝑟 = 𝐴 ⋅ 𝑟
 Solve using the power iteration method:
▪ (1) Init r(0) ; (2) Iterate: r(t+1) = M ∙ r(t)

▪ (3) Stop when |r(t+1) – r(t)|1 <

8

[1/N]NxN…N by N matrix

where all entries are 1/N

How do we actually compute
the PageRank?

 Indexed Web contains at least 2.1 billion
pages (Monday, 21 November, 2022)

▪ Data by Tilburg University (updated daily)

 The actual size seems to be >50 billion pages

10

GB = Sorted on Google and Bing

BG = Sorted on Bing and Google

Source: https://www.worldwidewebsize.com/

https://www.worldwidewebsize.com/

 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to hold
A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for

each entry (say)
▪ 2 billion entries for

vectors, approx 8GB
▪ Matrix A has N2 entries
▪ 1018 is a large number!

▪ Insight: M is sparse, A is not!
▪ Goal: Find a recursive update step

which uses only sparse matrices!
11

½ ½ 0

½ 0 0

0 ½ 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

7/15 7/15 1/15

7/15 1/15 1/15

1/15 7/15 13/15

0.8 +0.2

A = ∙M + (1-) [1/N]NxN

=

A =

 Suppose there are N pages
 Consider page i, with di out-links
 We have Mji = 1/|di| when i → j

and Mji = 0 otherwise
 The random teleport is equivalent to:
▪ Adding a teleport link from i to every other page

and setting transition probability to (1-)/N

▪ Reducing the probability of following each
out-link from 1/|di| to /|di|

▪ Equivalent: Tax each page a fraction (1-) of its
score and redistribute evenly

12

 𝒓 = 𝑨 ⋅ 𝒓, where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗 = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

 𝑟𝑗 = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖 # use def of 𝐴𝑗𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1
𝑁 𝑟𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
use σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵

13

[x]N … a vector of length N with all entries x
Note: Here we assumed M

has no dead-ends for σ𝑟𝑖 = 1

 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N (= const)

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10N entries
 So in each iteration, we need to:
▪ Compute rnew = M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note: if M contains dead-ends then σ𝑗 𝑟𝑗
𝑛𝑒𝑤 < 1 and

we also have to renormalize rnew so that it sums to 1

14

 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

▪ A. ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
(this is 𝜷𝑴 ⋅ 𝒓)

𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ B. Re-insert the “leaked” (due to 𝜷 and dead ends) PageRank:

∀𝑗: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+

𝟏−𝜷𝑺

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘

15

where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤 (after step A)

If the graph has no dead-ends then the amount of “leaked” PageRank is 1-β. But since we have dead-ends the
amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

Computing the PageRank with
Memory Constraints

 Encode sparse matrix using only nonzero
entries

▪ Space proportional roughly to number of links

▪ Say 10N => (4 bytes)*10*10 billion = 400GB

▪ Still won’t fit in memory, but will fit on disk

▪ In 2022: 1 TB RAM server ~20k EUR => all in RAM

17

0 3 1, 5, 7

1 5 17, 64, 113, 117, 245

2 2 13, 23

source

node degree destination nodes

Data structure
for matrix M

 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 Now one iteration (step A) of power iteration is:

18

0 3 1, 5, 6

1 4 17, 64, 113, 117

2 2 13, 23

source degree destination0
1
2

3
4
5
6

0
1
2

3
4
5
6

rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

Read into memory: i, di, dest1, …, destdi, rold(i)

For j = 1…di (this is 𝜷𝑴⋅𝒓)

rnew(destj) += rold(i) / di

Assume that

𝑆 =

𝑗

𝑟′𝑗
𝑛𝑒𝑤 = 1

to simplify, i.e.
no step B (=
no dead-ends)

 Assume enough RAM to fit rnew into memory

▪ Store rold and matrix M on disk

 In each iteration, we have to:

▪ Read rold and M

▪ Write rnew back to disk

▪ Cost per iteration of Power method:
= 2|r| + |M|

 Question:

▪ What if we could not even fit rnew in memory?

19

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

20

0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew rold

M

 Similar to nested-loop join in databases

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

 Total cost:

▪ k scans of M and rold

▪ Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?

▪ Hint: M is much bigger than r (approx 10-20x), so
we must avoid reading it k times per iteration

21

22

0 4 0, 1

1 3 0

2 2 1

src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew

rold

0 4 5

1 3 5

2 2 4

0 4 3

2 2 3

Break M into stripes! Each stripe contains only

destination nodes in the corresponding block of rnew

 Break M into stripes

▪ Each stripe contains only destination nodes
in the corresponding block of rnew

 Some additional overhead per stripe

▪ But it is usually worth it

 => Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|

23

 Measures generic popularity of a page

▪ Biased against topic-specific authorities

▪ Solution: Topic-Specific PageRank

 Uses a single measure of importance

▪ Other models of importance

▪ Solution: Hubs-and-Authorities

 Susceptible to Link spam

▪ Artificial link topographies created in order to
boost page rank

▪ Solution: TrustRank

24

(Short)

 Instead of generic popularity, can we
measure popularity within a topic?

 Goal: Evaluate Web pages not just according
to their popularity, but by how close they are
to a particular topic, e.g. “sports” or “history”

 Allows search queries to be answered based
on interests of the user

▪ Example: Query “Trojan” wants different pages
depending on whether you are interested in
sports, history and computer security

26

 Random walker has a small probability of
teleporting at any step

 Teleport can go to:
▪ Standard PageRank: Any page with equal probability
▪ To avoid dead-end and spider-trap problems

▪ Topic Specific PageRank: A topic-specific set of
“relevant” pages (teleport set)

 Idea: Bias the random walk
▪ When walker teleports, she pick a page from a set S

▪ S contains only pages that are relevant to the topic
▪ E.g., Open Directory (DMOZ) pages for a given topic/query

▪ For each teleport set S, we get a different vector rS

27

 To make this work all we need is to update the
teleportation part of the PageRank formulation:

𝑨𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝑖 ∈ 𝑆

𝜷𝑴𝒊𝒋 + 𝟎 otherwise

▪ A is stochastic!

▪ We weighted all pages in the teleport set S equally,
but this can be changed

 Compute as for regular PageRank:

▪ Multiply by M, then add a vector

▪ Maintains sparseness
28

1

2 3

4

Suppose S = {1}, = 0.8

Node Iteration

0 1 2 … stable

1 0.25 0.4 0.28 0.294

2 0.25 0.1 0.16 0.118

3 0.25 0.3 0.32 0.327

4 0.25 0.2 0.24 0.261

0.2

0.5
0.5

1

1 1

0.4 0.4

0.8

0.8 0.8

29

S={1,2,3,4}, β=0.8:

r=[0.13, 0.10, 0.39, 0.36]

S={1,2,3} , β=0.8:

r=[0.17, 0.13, 0.38, 0.30]

S={1,2} , β=0.8:

r=[0.26, 0.20, 0.29, 0.23]

S={1} , β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1}, β=0.90:

r=[0.17, 0.07, 0.40, 0.36]

S={1} , β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1}, β=0.70:

r=[0.39, 0.14, 0.27, 0.19]

 Create different PageRanks for different topics
▪ The 16 DMOZ top-level categories:
▪ arts, business, sports,…

 Which topic ranking to use?

▪ User can pick from a menu

▪ Classify query into a topic

▪ Can use the context of the query

▪ E.g., query is launched from a web page talking about a
known topic

▪ History of queries e.g., “basketball” followed by “Jordan”

▪ User context, e.g., user’s bookmarks, …
30

 Mark true statements (multiple are possible)

1. If we cannot fit the “new” rank vector into RAM,
we get only approximate result for rnew = A ∙ rold

2. In the „Block-based Update Algorithm“ we don‘t
need to preprocess „link matrix M“ before start

3. The “Block-Stripe Update Algorithm” stores the
targets of some links in a redundant way

4. In the “Topic-Specific PageRank”, pages not in the
teleport set S have smaller prob. as teleport goals

31

Link: https://pingo.coactum.de/147633

✓

✓

https://pingo.coactum.de/147633

Spam Farming

 Spamming:
▪ Any deliberate action to boost a web

page’s position in search engine results,
incommensurate with page’s real value

 Spam:
▪ Web pages that are the result of spamming

 This is a very broad definition
▪ SEO industry might disagree!

▪ SEO = search engine optimization

 Approximately 10-15% of web pages are spam

33

 Once Google became the dominant search
engine, spammers began to work out ways to
fool Google

 Spam farms were developed to concentrate
PageRank on a single page

 Link spam:

▪ Creating link structures that
boost PageRank of a particular
page

34

35

SPAM FARMING

 Three kinds of web pages from a
spammer’s point of view

▪ Inaccessible pages

▪ Visible but controlled by non-spammers

▪ Accessible pages

▪ e.g., blog comments pages

▪ spammer can post links to his pages

▪ Owned pages

▪ Completely controlled by spammer

▪ May span multiple domain names

36

 Spammer’s goal:

▪ Maximize the PageRank of target page t

 Technique:

▪ Get as many links from accessible pages as
possible to target page t

▪ Construct “link farm” to get PageRank
multiplier effect

37

38

Inaccessible

t

Accessible Owned

1

2

M

One of the most common and effective
organizations for a link farm

Millions of

farm pages

 x: PageRank contributed by accessible pages
 y: PageRank of target page t

 Rank of each “farm” page =
𝛽𝒚

𝑀
+

1−𝛽

𝑁

 𝒚 = 𝑥 + 𝛽𝑀
𝛽𝑦

𝑀
+

1−𝛽

𝑁
+

1−𝛽

𝑁

= 𝑥 + 𝛽2𝑦 +
𝛽 1−𝛽 𝑀

𝑁
+

1−𝛽

𝑁

 𝒚 =
𝒙

𝟏−𝜷𝟐
+ 𝒄

𝑴

𝑵
where 𝑐 =

𝛽

1+𝛽

Very small; ignore

Now we solve for y

39

N…# pages on the web

M…# of pages spammer

owns (not a matrix!)

Inaccessible

t

Accessible Owned

1

2

M

 𝒚 =
𝒙

𝟏−𝜷𝟐
+ 𝒄

𝑴

𝑵
where 𝑐 =

𝛽

1+𝛽

 For = 0.85, 1/(1-2)= 3.6

 𝒙 estimates the multiplier effect for acquired
PageRank; only partially controlled!

 But: By making M large, we can make y as
large as we want!

40

N…# pages on the web
M…# of pages
spammer owns

Inaccessible

t

Accessible Owned

1

2

M

Combating the Web Spam

 Combating term spam

▪ Analyze text using statistical methods

▪ Similar to email spam filtering

▪ Also useful: Detecting approximate duplicate pages

 Combating link spam:
 Detection and blacklisting of structures that look

like spam farms

▪ Leads to another war – hiding and detecting spam farms

 Better: TrustRank = topic-specific PageRank with a
teleport set of trusted pages

▪ Example: .edu domains, similar domains for non-US
schools

42

 Basic principle: Approximate isolation

▪ It is rare for a “good” page to point to a “bad”
(spam) page

 Sample a set of seed pages from the web

 Have an oracle (human) to identify the good
pages and the spam pages in the seed set

▪ Expensive task, so we must make seed set as
small as possible

43

 Call the subset of seed pages that are
identified as good the trusted pages

 Key idea: Perform a (topic-sensitive)
PageRank with teleport set = trusted pages

▪ Propagate trust through links:

▪ Each page gets a trust value between 0 and 1

 Option 1: Use a threshold value and mark all
pages below the trust threshold as spam

44

 Set trust of each trusted page to 1
 Suppose trust of page p is tp

▪ Page p has a set of out-links op

 For each qop, p confers the trust to q
▪ tp /|op| for 0 < < 1

 Trust is additive
▪ Trust of p is the sum of the trust conferred

on p by all its in-linked pages

45

 Trust attenuation:

▪ The degree of trust conferred by a trusted page
decreases with the distance in the graph

 Trust splitting:

▪ The larger the number of out-links from a page,
the less scrutiny the page author gives each out-
link

▪ Trust is split across out-links

46

 Two conflicting considerations:

▪ Human has to inspect each seed page, so seed set
must be as small as possible

▪ Must ensure every good page gets adequate trust
rank, so need make all good pages reachable from
seed set by short paths

47

 Suppose we want to pick a seed set of k pages
 How to do that?
 (1) PageRank:

▪ Pick the top k pages by PageRank

▪ Theory is that you can’t get a bad page’s rank
really high

 (2) Use trusted domains whose membership
is controlled, like .edu, .mil, .gov

48

 In the TrustRank model, we start with good
pages and propagate trust

 Complementary view:
What fraction of a page’s PageRank comes
from spam pages?

 In practice, we don’t know all
the spam pages, so we need
to estimate

49

Web

Trusted
set

Option 2:
 𝒓𝒑 = PageRank of page p
 𝒓𝒑

+ = PageRank of p with teleport into trusted
pages only

 Then: What fraction of a page’s PageRank comes
from spam pages?
𝒓𝒑
− = 𝒓𝒑 − 𝒓𝒑

+

 Spam mass of p =
𝒓𝒑
−

𝒓𝒑
▪ Pages with high spam mass

are spam

50

Trusted
set

Web

Questions?

