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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/
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Programming in Spark & MapReduce



Recalling the most important 
facts from Lecture 5



 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rrec for page rec
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𝒅𝒔𝒆𝒏𝒅𝒆𝒓 … out-degree of node 𝒔𝒆𝒏𝒅𝒆𝒓

Flow equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Adjacency matrix 𝑀
▪ Encodes the structure of the web graphl
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

else   𝑀𝑗𝑖 = 0

 Rank vector 𝑟: vector with an entry per page
▪ 𝑟𝑖 is the importance score of page 𝑖
▪ σ𝑖 𝑟𝑖 = 1

 The flow equations can be written as 

𝒓 = 𝑴 ⋅ 𝒓
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 Remember the flow equation:
 Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
▪ Suppose page i links to 3 pages, including j
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 PageRank equation [Brin-Page, ‘98]

𝑟𝑗 =෍

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

 The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1

𝑁
𝑁×𝑁

 We have now a recursive problem: 𝑟 = 𝐴 ⋅ 𝑟
 Solve using the power iteration method:
▪ (1) Init r(0) ; (2) Iterate: r(t+1) = M ∙ r(t)

▪ (3) Stop when |r(t+1) – r(t)|1 < 
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[1/N]NxN…N by N matrix

where all entries are 1/N



How do we actually compute 
the PageRank?



 Indexed Web contains at least 2.1 billion 
pages (Monday, 21 November, 2022)

▪ Data by Tilburg University (updated daily)

 The actual size seems to be >50 billion pages
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GB = Sorted on Google and Bing

BG = Sorted on Bing and Google

Source: https://www.worldwidewebsize.com/

https://www.worldwidewebsize.com/


 Key step is matrix-vector multiplication
▪ rnew = A ∙ rold

 Easy if we have enough main memory to hold 
A, rold, rnew

 Say N = 1 billion pages
▪ We need 4 bytes for 

each entry (say)
▪ 2 billion entries for 

vectors, approx 8GB
▪ Matrix A has N2 entries
▪ 1018 is a large number!

▪ Insight: M is sparse, A is not!
▪ Goal: Find a recursive update step

which uses only sparse matrices!
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 Suppose there are N pages
 Consider page i, with di out-links
 We have Mji = 1/|di| when i → j

and Mji = 0 otherwise
 The random teleport is equivalent to:
▪ Adding a teleport link from i to every other page 

and setting transition probability to (1-)/N

▪ Reducing the probability of following each 
out-link from 1/|di| to /|di|

▪ Equivalent: Tax each page a fraction (1-) of its 
score and redistribute evenly 
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 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏−𝜷

𝑵

 𝑟𝑗 = σi=1
𝑁 𝐴𝑗𝑖 ⋅ 𝑟𝑖

 𝑟𝑗 = σ𝑖=1
𝑁 𝛽 𝑀𝑗𝑖 +

1−𝛽

𝑁
⋅ 𝑟𝑖 # use def of 𝐴𝑗𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
σi=1
𝑁 𝑟𝑖

= σi=1
𝑁 𝛽 𝑀𝑗𝑖 ⋅ 𝑟𝑖 +

1−𝛽

𝑁
# use σ𝑟𝑖 = 1

 So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏−𝜷

𝑵 𝑵
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[x]N … a vector  of length N with all entries x
Note: Here we assumed M

has no dead-ends for σ𝑟𝑖 = 1



 We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷

𝑵
𝑵

▪ where [(1-)/N]N is a vector with all N entries (1-)/N (= const)

 M is a sparse matrix! (with no dead-ends)

▪ 10 links per node, approx 10N entries
 So in each iteration, we need to:
▪ Compute rnew =  M ∙ rold

▪ Add a constant value (1-)/N to each entry in rnew

▪ Note: if M contains dead-ends then σ𝑗 𝑟𝑗
𝑛𝑒𝑤 < 1 and 

we also have to renormalize rnew so that it sums to 1
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 Input: Graph 𝑮 and parameter 𝜷
▪ Directed graph 𝑮 (can have spider traps and dead ends)
▪ Parameter 𝜷

 Output: PageRank vector 𝒓𝒏𝒆𝒘

▪ Set: 𝑟𝑗
𝑜𝑙𝑑 =

1

𝑁

▪ repeat until convergence: σ𝑗 𝑟𝑗
𝑛𝑒𝑤 − 𝑟𝑗

𝑜𝑙𝑑 < 𝜀

▪ A. ∀𝑗: 𝒓′𝒋
𝒏𝒆𝒘 = σ𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
(this is 𝜷𝑴 ⋅ 𝒓)

𝒓′𝒋
𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

▪ B. Re-insert the “leaked” (due to 𝜷 and dead ends) PageRank:

∀𝑗: 𝒓𝒋
𝒏𝒆𝒘 = 𝒓′𝒋

𝒏𝒆𝒘
+

𝟏−𝜷𝑺

𝑵

▪ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘
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where: 𝑆 = σ𝑗 𝑟′𝑗
𝑛𝑒𝑤 (after step A)

If the graph has no dead-ends then the amount of “leaked” PageRank is 1-β. But since we have dead-ends the 
amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.



Computing the PageRank with 
Memory Constraints



 Encode sparse matrix using only nonzero 
entries

▪ Space proportional roughly to number of links

▪ Say 10N => (4 bytes)*10*10 billion = 400GB

▪ Still won’t fit in memory, but will fit on disk

▪ In 2022: 1 TB RAM server ~20k EUR => all in RAM
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 Assume enough RAM to fit rnew into memory
▪ Store rold and matrix M on disk

 Now one iteration (step A) of power iteration is:
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rnew rold

Initialize all entries of rnew = (1-) / N

For each page i (of out-degree di):

Read into memory: i, di, dest1, …, destdi, rold(i)

For j = 1…di                                             (this is 𝜷𝑴⋅𝒓)

rnew(destj) +=  rold(i) / di

Assume that

𝑆 =෍

𝑗

𝑟′𝑗
𝑛𝑒𝑤 = 1

to simplify, i.e. 
no step B (=
no dead-ends)



 Assume enough RAM to fit rnew into memory

▪ Store rold and matrix M on disk

 In each iteration, we have to:

▪ Read rold and M

▪ Write rnew back to disk

▪ Cost per iteration of Power method:
= 2|r| + |M|

 Question:

▪ What if we could not even fit rnew in memory?
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▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

20

0 4 0, 1, 3, 5

1 2 0, 5

2 2 3, 4

src degree destination

0
1

2

3

4
5

0
1
2

3
4
5

rnew rold

M



 Similar to nested-loop join in databases

▪ Break rnew into k blocks that fit in memory

▪ Scan M and rold once for each block

 Total cost:

▪ k scans of M and rold

▪ Cost per iteration of Power method:
k(|M| + |r|) + |r| = k|M| + (k+1)|r|

 Can we do better?

▪ Hint: M is much bigger than r (approx 10-20x), so 
we must avoid reading it k times per iteration
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 Break M into stripes

▪ Each stripe contains only destination nodes 
in the corresponding block of rnew

 Some additional overhead per stripe

▪ But it is usually worth it

 => Cost per iteration of Power method:
=|M|(1+) + (k+1)|r|
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 Measures generic popularity of a page

▪ Biased against topic-specific authorities

▪ Solution: Topic-Specific PageRank 

 Uses a single measure of importance

▪ Other models of importance

▪ Solution: Hubs-and-Authorities

 Susceptible to Link spam

▪ Artificial link topographies created in order to 
boost page rank

▪ Solution: TrustRank
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(Short)



 Instead of generic popularity, can we 
measure popularity within a topic?

 Goal: Evaluate Web pages not just according 
to their popularity, but by how close they are 
to a particular topic, e.g. “sports” or “history”

 Allows search queries to be answered based 
on interests of the user

▪ Example: Query “Trojan” wants different pages 
depending on whether you are interested in 
sports, history and computer security

26



 Random walker has a small probability of 
teleporting at any step

 Teleport can go to:
▪ Standard PageRank: Any page with equal probability
▪ To avoid dead-end and spider-trap problems

▪ Topic Specific PageRank: A topic-specific set of 
“relevant” pages (teleport set)

 Idea: Bias the random walk
▪ When walker teleports, she pick a page from a set S

▪ S contains only pages that are relevant to the topic
▪ E.g., Open Directory (DMOZ) pages for a given topic/query

▪ For each teleport set S, we get a different vector rS
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 To make this work all we need is to update the 
teleportation part of the PageRank formulation: 

𝑨𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝑖 ∈ 𝑆

𝜷𝑴𝒊𝒋 + 𝟎 otherwise

▪ A is stochastic!

▪ We weighted all pages in the teleport set S equally, 
but this can be changed

 Compute as for regular PageRank:

▪ Multiply by M, then add a vector

▪ Maintains sparseness
28



1

2 3

4

Suppose S = {1},  = 0.8

Node Iteration

0 1 2     … stable

1 0.25 0.4 0.28 0.294

2 0.25 0.1 0.16 0.118

3 0.25 0.3 0.32 0.327

4 0.25 0.2 0.24 0.261

0.2

0.5
0.5

1

1 1

0.4 0.4

0.8

0.8 0.8
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S={1,2,3,4},  β=0.8:

r=[0.13, 0.10, 0.39, 0.36]

S={1,2,3} ,  β=0.8:

r=[0.17, 0.13, 0.38, 0.30]

S={1,2} ,  β=0.8:

r=[0.26, 0.20, 0.29, 0.23]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.90:

r=[0.17, 0.07, 0.40, 0.36]

S={1} ,  β=0.8:

r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.70:

r=[0.39, 0.14, 0.27, 0.19]



 Create different PageRanks for different topics
▪ The 16 DMOZ top-level categories:
▪ arts, business, sports,…

 Which topic ranking to use?

▪ User can pick from a menu

▪ Classify query into a topic

▪ Can use the context of the query

▪ E.g., query is launched from a web page talking about a 
known topic

▪ History of queries e.g., “basketball” followed by “Jordan”

▪ User context, e.g., user’s bookmarks, …
30



 Mark true statements (multiple are possible)

1. If we cannot fit the “new” rank vector into RAM, 
we get only approximate result for rnew = A ∙ rold

2. In the „Block-based Update Algorithm“ we don‘t
need to preprocess „link matrix M“ before start

3. The “Block-Stripe Update Algorithm” stores the 
targets of some links in a redundant way

4. In the “Topic-Specific PageRank”, pages not in the 
teleport set S have smaller prob. as teleport goals
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Link: https://pingo.coactum.de/147633
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https://pingo.coactum.de/147633


Spam Farming



 Spamming:
▪ Any deliberate action to boost a web 

page’s position in search engine results, 
incommensurate with page’s real value

 Spam:
▪ Web pages that are the result of spamming

 This is a very broad definition
▪ SEO industry might disagree!

▪ SEO = search engine optimization

 Approximately 10-15% of web pages are spam
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 Once Google became the dominant search 
engine, spammers began to work out ways to 
fool Google

 Spam farms were developed to concentrate 
PageRank on a single page

 Link spam:

▪ Creating link structures that  
boost PageRank of a particular 
page
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SPAM  FARMING



 Three kinds of web pages from a 
spammer’s point of view

▪ Inaccessible pages

▪ Visible but controlled by non-spammers

▪ Accessible pages

▪ e.g., blog comments pages

▪ spammer can post links to his pages

▪ Owned pages

▪ Completely controlled by spammer

▪ May span multiple domain names
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 Spammer’s goal:

▪ Maximize the PageRank of target page t

 Technique:

▪ Get as many links from accessible pages as 
possible to target page t

▪ Construct “link farm” to get PageRank 
multiplier effect
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organizations for a link farm
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 x: PageRank contributed by accessible pages
 y: PageRank of target page t

 Rank of each “farm” page =
𝛽𝒚

𝑀
+

1−𝛽

𝑁

 𝒚 = 𝑥 + 𝛽𝑀
𝛽𝑦

𝑀
+

1−𝛽

𝑁
+

1−𝛽

𝑁

= 𝑥 + 𝛽2𝑦 +
𝛽 1−𝛽 𝑀

𝑁
+

1−𝛽

𝑁

 𝒚 =
𝒙

𝟏−𝜷𝟐
+ 𝒄

𝑴

𝑵
where 𝑐 =

𝛽

1+𝛽

Very small; ignore

Now we solve for y
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N…# pages on the web
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 𝒚 =
𝒙

𝟏−𝜷𝟐
+ 𝒄

𝑴

𝑵
where 𝑐 =

𝛽

1+𝛽

 For  = 0.85, 1/(1-2)= 3.6

 𝒙 estimates the multiplier effect for acquired 
PageRank; only partially controlled!

 But: By making M large, we can make y as 
large as we want!
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Combating the Web Spam



 Combating term spam

▪ Analyze text using statistical methods

▪ Similar to email spam filtering

▪ Also useful: Detecting approximate duplicate pages

 Combating link spam:
 Detection and blacklisting of structures that look 

like spam farms

▪ Leads to another war – hiding and detecting spam farms

 Better: TrustRank = topic-specific PageRank with a 
teleport set of trusted pages

▪ Example: .edu domains, similar domains for non-US 
schools
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 Basic principle: Approximate isolation

▪ It is rare for a “good” page to point to a “bad” 
(spam) page

 Sample a set of seed pages from the web

 Have an oracle (human) to identify the good 
pages and the spam pages in the seed set

▪ Expensive task, so we must make seed set as 
small as possible
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 Call the subset of seed pages that are 
identified as good the trusted pages

 Key idea: Perform a (topic-sensitive) 
PageRank with teleport set = trusted pages

▪ Propagate trust through links:

▪ Each page gets a trust value between 0 and 1

 Option 1: Use a threshold value and mark all 
pages below the trust threshold as spam
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 Set trust of each trusted page to 1
 Suppose trust of page p is tp

▪ Page p has a set of out-links op

 For each qop, p confers the trust to q
▪  tp /|op| for  0 < < 1

 Trust is additive 
▪ Trust of p is the sum of the trust conferred 

on p by all its in-linked pages
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 Trust attenuation:

▪ The degree of trust conferred by a trusted page 
decreases with the distance in the graph

 Trust splitting:

▪ The larger the number of out-links from a page, 
the less scrutiny the page author gives each out-
link

▪ Trust is split across out-links
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 Two conflicting considerations:

▪ Human has to inspect each seed page, so seed set 
must be as small as possible

▪ Must ensure every good page gets adequate trust 
rank, so need make all good pages reachable from 
seed set by short paths
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 Suppose we want to pick a seed set of k pages
 How to do that?
 (1) PageRank:

▪ Pick the top k pages by PageRank

▪ Theory is that you can’t get a bad page’s rank 
really high

 (2) Use trusted domains whose membership 
is controlled, like .edu, .mil, .gov
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 In the TrustRank model, we start with good 
pages and propagate trust

 Complementary view: 
What fraction of a page’s PageRank comes 
from spam pages?

 In practice, we don’t know all 
the spam pages, so we need 
to estimate
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Web

Trusted 
set



Option 2:
 𝒓𝒑 = PageRank of page p
 𝒓𝒑

+ = PageRank of p with teleport into trusted
pages only

 Then: What fraction of a page’s PageRank comes 
from spam pages?
𝒓𝒑
− = 𝒓𝒑 − 𝒓𝒑

+

 Spam mass of p = 
𝒓𝒑
−

𝒓𝒑
▪ Pages with high spam mass

are spam
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Trusted 
set

Web



Questions?


