
Lecture 7

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

 A hash function h: D→R maps objects from a (usually
huge) domain space D to a (smaller) range R of
consecutive integers (“buckets”)

▪ E.g. D = set of all files in HDFS, R = [0,…,b-1], b=10000

 Intuitively, h computes a short signature of an object

4

D

huge & sparse

R: small
& dense

h

 h is in general not
injective => collisions
possible (i.e. h(x)=h(y)
for x ≠y)

 Another view: mapping from a sparse storage for D
to dense storage (for R)

 A table containing all possible objects in D would be
too large, but a table for all buckets in R is possible

 Implementation?

 x D is treated as
integer

 h(x) = x mod b (b
preferably a prime)

5

D

huge & sparse

R: small
& dense

h

 Problem of storing and fast search for elements
is very common => optimized data structures

 Java

▪ HashSet: a set implementation

▪ HashMap: for storing pairs <key, value> and fast
finding of values by a key

▪ TreeMap: also for <key, value>, use balanced trees

 Python, C++ (STL):

▪ dictionary, uses hashing

6

 Solution 1: sorted table

▪ Storage: sort all existing elements by their IDs,
store IDs (or references) in a table T

▪ Query for element q: binary search for q.ID in T
▪ Assume that q is like a number, e.g. a bit sequence

 Solution 2: bit array
▪ Storage: Create a huge bit array A covering

whole D and set A[x.ID] = 1 iff x M

▪ Query for q: make a lookup A[q.ID]
▪ True iff q is in the set M

▪ Very fast but we need a huge and sparse array
(e.g. elements = strings of fixed length)

7

D

D

Given a set MD, we want to test: is q M?

T

A

 Solution 3: hash table
 Storage and setup:

▪ Fix an integer b c*|M| and a hash fn h:D→R, R = [0,..,b-1]

▪ Create an array T of size b with lists (at first: empty lists)

▪ If x M: update list L = T[h(x)] by adding x (or a ref) to L

 Query for element q:
 Make a lookup L= T[h(q)]; if list L not

empty, check q L => yes iff q M

 Runtime, space requirements?

8

▪ Runtime: fast, O(1) for search and
inserting

▪ Space: b references to lists, b lists, plus
approx. size of all elements in M

D

R=[0,..,b-1]

Conflict

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

10

Programming in Spark & MapReduce

 Many problems can be expressed as
finding “similar” objects:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Points in the same cluster (clustering)

▪ Pages with similar words
▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

11

 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐

(𝑵 = #data points), see hierarchical clustering

 MAGIC: This can be done in 𝑂 𝑁 !! How?
12

 Goal: Find near-neighbors in high-dim. space
▪ We formally define “near neighbors” as

points that are a “small distance” apart
 We need a “distance” metric
 E.g. Jaccard distance/similarity (recall)
▪ The Jaccard similarity of two sets is the size of

their intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

▪ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

13

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

 Goal: Given a large number (𝑁 in the millions or
billions) of documents, find “near duplicate” pairs

 Applications:
▪ Mirror websites, or approximate mirrors
▪ Don’t want to show both in search results

▪ Similar news articles at many news sites
▪ Cluster articles by “same story”

 Problems:
▪ Too many documents to compare all pairs

▪ Documents are so large or so many that they cannot
fit in main memory

▪ Many small pieces of one document can appear
out of order in another

14

 Suppose we need to find near-duplicate
documents among N = 1 million documents

 Naïvely, we would have to compute pairwise
Jaccard similarities for every pair of docs

 How long (at 106 comparisons/sec)?

▪ 𝑁(𝑁 − 1)/2 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec,
it would take 5 days

 For 𝑁 = 10 million, it takes more than a year…
15

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Identify pairs of
signatures likely to be from similar
documents

4. Final filtering: We get (few) candidate pairs!
=> Those can be checked by pairwise
comparisons

16

17

Docu-

ment

The set

of strings

of length k

that appear

in the

document

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

 Step 1: Shingling: Convert documents to sets

 Simple approaches:

▪ Document = set of words appearing in document

▪ Document = set of “important” words

 Don’t work well for this application; Why?

 Need to account for ordering of words!
 A different way: Shingles!

19

 A k-shingle (or k-gram) for a document is a
sequence of k (consecutive) tokens that
appears in the doc

▪ Tokens can be characters, words or something
else, depending on the application

 Assume e.g.: tokens = characters

 Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}

▪ Option: Shingles as a bag (multiset), count “ab”
twice: S’(D1) = {ab, bc, ca, ab}

20

 Now: doc. D1 is a set of its k-shingles: C1=S(D1)
 Equivalently, each document is a 0/1 vector in

the space of k-shingles

▪ Each unique shingle is a dimension

▪ Vectors are very sparse

 For sets, a natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

21

 Documents that have lots of shingles in
common have similar text (content)

▪ Even if the text appears in different order

 Caveat: You must pick k large enough, or most
documents will have most shingles

▪ k = 5 is OK for short documents

▪ k = 10 is better for long documents

22

 To compress long shingles, we can hash them
to (say) 4 bytes (value of a hash function)

 => We can represent a document by the set of
hash values of its k-shingles

 Example: k=2; document D1= abcab:

▪ Set of 2-shingles: S(D1) = {ab, bc, ca}

▪ Set of hash val’s of the shingles e.g.: {1, 5, 7}

▪ Note: Non-bijective, i.e. two documents could
(rarely) appear to have shingles in common, when
in fact only the hash-values were shared

23

Minhashing:Converting large sets to short
signatures, while preserving similarity

 Many similarity problems can be
formalized as finding subsets that
have significant intersection

▪ Encode sets using 0/1 (bit, Boolean) vectors

▪ Interpret set intersection as bitwise AND, and
set union as bitwise OR => fast

 Example: C1 = 10111; C2 = 10011

▪ Size of intersection = 3; size of union = 4

▪ Jaccard similarity (not distance) = 3/4

▪ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

25

 Rows = elements (shingles)
 Columns = sets (documents)
▪ 1 in row e and column s if and only

if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:
▪ Example: sim(C1 ,C2) = ?

▪ Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
26

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

 So far:

▪ Documents → Sets of shingles

▪ Represent sets as Boolean vectors in a matrix

 Next goal: Find similar columns from small
(similar) signatures

▪ Similarity of columns == similarity of signatures

27

 (Recall) Next Goal: Find similar columns from small
signatures

 Naïve approach:

▪ 1) Signatures of columns: small summaries of columns

▪ 2) Examine pairs of signatures to find similar columns

▪ Essential: Similarities of signatures and columns are related

▪ 3) Optional: Check that columns with similar signatures
are really similar

 But .. comparing all pairs of signatures may take too
much time: Job for LSH
▪ Later

28

 Key idea: map each column C to a small signature
h(C), such that:

▪ (1) h(C) is small enough that the signature fits in RAM

▪ (2) sim(C1, C2) is the same as the “similarity” of
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

29

 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on
the similarity metric sim(C1,C2)

▪ Not all similarity metrics have a suitable
hash function

 But there is a suitable hash function for
the Jaccard similarity: it is called MinHash

30

 Def.: Let h be a hash function that maps the
members of S to distinct integers, and for any
set S define MinHashh(S) = hmin(S) to be the
minimum value of h(x)

 Example:
▪ Assume S = {2, 3, 6} and

▪ h(2) = 4, h(3) = 5, h(6) = 1

 What is hmin(S)?

 Of course, hmin(S) = 1

31

S = {2, 3, 6}

4 5 1

https://en.wikipedia.org/wiki/MinHash

32

 Recall: we represent each set as a
Boolean vector C (here: S = {2, 3, 6})

 Assume that a hash function h is
given by a (random) permutation
 of the rows of the Boolean vector

▪ h fulfills: “… maps the members of S to
distinct integers”

 Then MinHashh(S) is the index of the
first row of the permuted column C (=
rows ordered by vals of) with value 1

 => Again, h ,min(S) = 1

1

2

3
4

5

6

(1) = 3

(2) = 4

(3) = 5

(4) = 6

(5) = 2

(6) = 1

0

1

1

0

0

1

Row perm.

1

2

3
4

5

6

1

1

1

 “Goes to” representation of a permutation:

▪ Original row with index r goes to row (r)
 Recall: Then MinHashh(S) is the index of the first row

of the permuted column C with value 1

 Thus, hmin, (C) = 2

33

0

1

0

1

1

2

3
4

(1) = 3

(2) = 4

(3) = 1

(4) = 2

0

1

0

1

 Recall:

▪ Rows = elements (shingles)

▪ Columns = sets (documents)

▪ 1 in row e and column s if and only if e
is a member of s

 For each column (= set):

▪ We use several (e.g., 100)
independent hash functions (that
is, permutations) to create a
signature of a column

34

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

Value n at position p means:
“previous row p goes to row n

in the new ordering”

35

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation

Value n at position p means:
“previous row p goes to row n

in the new ordering”

36

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation

Heuristic for computing minhash for a permutation
specification „column“ P and an input X:
Set k= 1
1. In P, search for row r with value k.
2. Is X[r] == 1? Yes => Minhash is r, finished.
3. No => k := k+1, repeat the loop from #1.

 Choose a random permutation

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ I.e. the probability that the minhash-values
h(C1) of C1 and h(C2) of C2 agree (under the
permutation)

▪ is exactly

▪ the Jaccard-similarity of C1 and C2 .

37

 Given cols C1 and C2, rows may be classified as:
C1 C2

A 1 1

B 1 0

C 0 1

D 0 0
 Note: Jaccard-sim. is: sim(C1, C2) = a/(a +b +c)
 Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

▪ Go down the permuted cols C1 and C2 until we see a 1 (in any of
both columns)

▪ There are a+b+c rows at which we can stop

▪ The prob. that we stopped at type-A row is a/(a+b+c)

▪ If it’s a type-A row, then h(C1) = h(C2); h(C1)≠h(C2) for types B/C
38

a = num rows of type A,
b = num rows of type B,
c = etc.
Disjunctive row sets!

39

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 We are interested in sim(C1, C2)
▪ => We need to estimate Pr[h(C1) = h(C2)]

 But testing h(C1) = h(C2) gives us only true or false!

 Idea (similar to Monte-Carlo methods):
▪ Given a random variable X with values 0, 1 and a

distribution (1-p, p) : sample X many times to estimate p!

▪ => Use many different min-hash functions and compute
the fraction of cases in which they agree

 Definition: the similarity of two signatures is the
fraction of the hash functions in which they agree

 This approximates sim(C1, C2)
40

 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector

▪ sig(C)[i] = the index of the first row that has a 1 in
column C, according to the i-th permutation, i.e.

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is
small ~𝟏𝟎𝟎 numbers!

 We achieved our goal! We “compressed”
long bit vectors into short signatures

41

 Permuting rows even once is very expensive
 Approximate permutation by a hash function hi

▪ hi(x) = [((a·x+b) mod p) mod N] + 1

▪ a, b: random integers;
p: a prime (p > N); N: #rows in the matrix

▪ hi is possibly not injective, but errors are rare => OK

 Pick about K = 100 such hash functions hi

42

a

b

c

d

1

2

3

4

hi(1) = 3

hi(2) = 4

hi(3) = 1

hi(4) = 2

c

d

a

b

 Pick about K = 100 such hash functions hi

One-pass implementation:

▪ For each column C and hash-function hi prepare a
“slot” (variable) sig(C)[i] for the min-hash value

▪ Initialize all sig(C)[i] =

▪ Scan rows of C looking for 1s, with q = row index

▪ If row q has 1 in column C, then for each hi (i=1..100):

▪ If hi(q) < sig(C)[i], then sig(C)[i] hi(q)

43

Intuition: for fixed C and hi, find the smallest value hi(r)
over all rows r with C(r) = 1

For fixed C and hi:
Find the smallest value hi(r) over all rows r with C(r) = 1

Scan rows looking for 1s
▪ If row q has 1 in column C, then for each hi :
▪ If hi(q) < sig(C)[i], then sig(C)[i] hi(q)

Example: fixed C and hi

44

0

1

1

0

1

2

3

4

hi(1) = 3

hi(2) = 4

hi(3) = 1

hi(4) = 2

C sig(C)[i] sig(C)[i]

4

1

1

S
can

S = {2, 3}

4 1

Questions?

 Detailed proof:

▪ Let X be a set (of shingles), y X an element

▪ Then: Pr[(y) = min((X))] = 1/|X|

▪ It is equally likely that any y X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1)) if y C1 , or

(y) = min((C2)) if y C2

▪ So the prob. that both are true is the prob. y C1 C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|
= sim(C1, C2)

46

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

