Mining Massive Datasets

Lecture 7
Artur Andrzejak

UN IVERSITAT

http://pvs.ifi.uni-heidelberg.de imErserc .

http://pvs.ifi.uni-heidelberg.de/

Note on Slides

A substantial part of these slides come (either
verbatim or in a modified form) from the book

by
(Stanford University).
For more information, see the website

accompanying the book: http://www.mmds.org.

http://www.mmds.org/

A Word on Hash Functions
and Data Structures

Hash Functions /1

= A hash function h: D—>R maps objects from a (usually
huge) domain space D to a (smaller) range R of
consecutive integers (“buckets”)
E.g. D = set of all files in HDFS, R = [0,...,b-1], b=10000
= Intuitively, h computes a short signature of an object

= hisin general not
injective => collisions
possible (i.e. h(x)=h(y)
for x #y)

& dense
huge & sparse

Hash Functions /2

= Another view: mapping from a sparse storage for D
to dense storage (for R)
= A table containing all possible objects in D would be

too large, but a table for all buckets in R is possible
= Implementation?

= x €D is treated as
integer

= h(x)=xmodb (b
preferably a prime)

& dense
huge & sparse

HashSet /HashMap, Dictionary

Problem of storing and fast search for elements
IS very common => optimized data structures
Java

HashSet: a set implementation

HashMap: for storing pairs <key, value> and fast
finding of values by a key

TreeMap: also for <key, value>, use balanced trees

Python, C++ (STL):
dictionary, uses hashing

Example: Implementing Sets /1

Givenaset M c D, we want to test:isq e M?

Solution 1: sorted table D T
Storage: sort all existing elements by their IDs, D
store IDs (or references) in a table T /

Query for element g: binary search for g.IDin T

Assume that g is like a number, e.g. a bit sequence

Solution 2: bit array A

Storage: Create a huge bit array A covering
whole D and set A[x.ID] =1 iff x € M

Query for q: make a lookup A[q.ID]
True iff gisin the set M

Very fast but we need a huge and sparse array
(e.g. elements = strings of fixed length)

TN

Example: Implementing Sets /2

Solution 3: hash table
Storage and setup:
Fix an integer b ~ ¢*|M| and a hash fn h:D—R, R =[0,..,b-1]
Create an array T of size b with lists (at first: empty lists)
If x € M: update list L = T[h(x)] by adding x (or a ref) to L
Query for element q:

Conflict
Make a lookup L= T[h(q)]; if list L not
empty, checkg e L=>vyesiffge M
Runtime, space requirements? d.
Runtime: fast, O(1) for search and D N
inserting
R=[0,..,b-1]

Space: b references to lists, b lists, plus
approx. size of all elements in M

Finding Similar Items:
Locality Sensitive Hashing

Locality Sensitive Hashing

High dim. Graph Infinite Machine ADDS
data data data learning PP

Sléoncsa; ’Iclit/»; PageRank, Recommen
) SimRank der systems
hashing
Clusterin Community Decision Association
& Detection Trees Rules
Dlmepsm- oo peeenten Duplicate
nality : document
: Detection kNN .
reduction H detection

Programming in Spark & MapReduce

A Common Metaphor

Many problems can be expressed as
finding “similar” objects:
Find near-neighbors in high-dimensional space

Examples:
Points in the same cluster (clustering)

Pages with similar words
For duplicate detection, classification by topic

Customers who purchased similar products
Products with similar customer sets

11

Problem for Today’s Lecture

= Given: High dimensional data points xq, x5, ...
For example: Image is a long vector of pixel colors

1 2 1
0 2 1|>[121021010]
0 1 0.

= And some distance function d(xq, x3)
Which quantifies the “distance” between x4 and x,
= Goal: Find all pairs of data points (x;, x;) that are
within some distance threshold d(xi, x]-) <s

= Note: Naive solution would take O(Nz) ®

(N = #data points), see hierarchical clustering
= MAGIC: This can be done in O(N)!! How?

12

Distance Measures

Goal: Find near-neighbors in high-dim. space

We formally define “near neighbors” as
points that are a “small distance” apart
We need a “distance” metric

E.g. Jaccard distance/similarity (recall)

The Jaccard similarity of two sets is the size of
their intersection divided by the size of their union:
sim(C,, C,) = |[C,;nC,|/|C,uG, |

Jaccard distance: d(C,, C,) =1- |C,;nC,|/|C,uG, |

3 in intersection

8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8

13

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or

billions) of documents, find “near duplicate” pairs
Applications:

Mirror websites, or approximate mirrors
Don’t want to show both in search results

Similar news articles at many news sites

Cluster articles by “same story”
Problems:

Too many documents to compare all pairs

Documents are so large or so many that they cannot
fit in main memory

Many small pieces of one document can appear
out of order in another

14

Motivation for a Fast Algorithm

Suppose we need to find near-duplicate
documents among N = 1 million documents

Naively, we would have to compute pairwise
Jaccard similarities for every pair of docs
How long (at 10° comparisons/sec)?

N(N —1)/2 = 5*10* comparisons

At 10° secs/day and 10° comparisons/sec,

it would take 5 days

For N = 10 million, it takes more than a year...

15

3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: |dentify pairs of
signatures likely to be from similar
documents

4. Final filtering: We get (few) candidate pairs!
=> Those can be checked by pairwise
comparisons

16

The Big Picture

Docu-
ment

T

T

Min

A 4

Shingling

/

] Hashing

/

Locality-
Sensitive
Hashing

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the sets, and
document reflect their

similarity

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

17

Shingling

Documents as High-Dim Data

= Step 1: Shingling: Convert documents to sets

= Simple approaches:
Document = set of words appearing in document

Document = set of “important” words
= Don’t work well for this application; Why?

= Need to account for ordering of words!
= A different way: Shingles!

19

Define: Shingles

A k-shingle (or k-gram) for a document is a
sequence of k (consecutive) tokens that
appears in the doc

Tokens can be characters, words or something
else, depending on the application

Assume e.g.: tokens = characters

Example: k=2; document D, = abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}

Option: Shingles as a bag (multiset), count “ab”
twice: S’(D,) = {ab, bc, ca, ab}

20

Similarity Metric for Shingles

Now: doc. D, is a set of its k-shingles: C;=S(D,)
Equivalently, each document is a 0/1 vector in
the space of k-shingles

Each unique shingle is a dimension

Vectors are VEry sparse
For sets, a natural similarity measure is the

Jaccard similarity:
sim(D,, D,) = |C;NC,|/|C,uC, |

CLOD

21

Working Assumption

Documents that have lots of shingles in
common have similar text (content)

Even if the text appears in different order

Caveat: You must pick k large enough, or most
documents will have most shingles

k =5 is OK for short documents
k =10 is better for long documents

22

Compressing Shingles (Optional)

To compress long shingles, we can hash them
to (say) 4 bytes (value of a hash function)
=> We can represent a document by the set of
hash values of its k-shingles
Example: k=2; document D,= abcab:

Set of 2-shingles: S(D,) = {ab, bc, ca}

Set of hash val’s of the shingles e.g.: {1, 5, 7}

Note: Non-bijective, i.e. two documents could

(rarely) appear to have shingles in common, when
in fact only the hash-values were shared

23

MinHashing

Minhashing: Converting large sets to short
signatures, while preserving similarity

Encoding Sets as Bit Vectors

Many similarity problems can be (0)
formalized as finding subsets that

have significant intersection
Encode sets using 0/1 (bit, Boolean) vectors

Interpret set intersection as bitwise AND, and
set union as bitwise OR => fast

Example: C; =10111; C, = 10011
Size of intersection = 3; size of union =4
Jaccard similarity (not distance) = 3/4
Distance: d(C,,C,) = 1 — (Jaccard similarity) = 1/4

25

From Sets to Boolean Matrices

Rows = elements (shingles)
Columns = sets (documents)

.) Documents
1 in row e and column s if and only
if e is a member of s 1 |1 |1
Column similarity is the Jaccard 1 |1 |0
similarity of ’Fhe corresponding o |11 lo
sets (rows with value 1) 8
. .. g0 |0 |0
Typical matrix is sparse! =
Each document is a column: 1 |0 |O
Example: sim(C, ,C,) =? 1 11 |1
Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6 1 O 1

d(C,,C,) =1 — (Jaccard similarity) = 3/6

Outline: Finding Similar Columns

So far:

Documents — Sets of shingles

Represent sets as Boolean vectors in a matrix
Next goal: Find similar columns from small
(similar) signatures

Similarity of columns == similarity of signatures

27

What to do with small signatures?

(Recall) Next Goal: Find similar columns from small
signatures
Naive approach:

1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures
are really similar

But .. comparing all pairs of signatures may take too
much time: Job for LSH

Later

28

Hashing Columns (Signatures)

= Key idea: map each column C to a small signature
h(C), such that:
(1) h(C) is small enough that the signature fits in RAM

(2) sim(C,, C,) is the same as the “similarity” of
signatures h(C,) and h(C,)

= Goal: Find a hash function h(:) such that:

If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

29

Min-Hashing

Goal: Find a hash function h(-) such that:
if sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
if sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Clearly, the hash function on
the similarity metric sim(C,,C,)

Not all similarity metrics have a suitable
hash function

But there is a suitable hash function for
the Jaccard similarity: it is called MinHash

30

MinHash: Definition

Def.: Let h be a hash function that maps the

members of S to distinct integers, and for any
set S define MinHash, (S) = (S) to be the
minimum value of h(x)

min

Example:
Assume S ={2, 3, 6} and S ={2, 3, 6}
h(2)=4,h(3)=5,h(6)=1 TN
4 5

What is h_ (S)?

Of course, h_. (S)=1

31

https://en.wikipedia.org/wiki/MinHash

Min-Hashing: Using Permutations

Recall: we represent each set as a
Boolean vector C (here: S ={2, 3, 6})
Assume that a hash function h is
given by a (random) permutation

z of the rows of the Boolean vector

h fulfills: “... maps the members of S to
distinct integers”

o 00 B W N B

Then MinHash, (S) is the index of the
first row of the permuted column C (=
rows ordered by vals of) with value 1
=>Again, h_ ..(S)=1

= O O = | = O

(1) =
(2) = 4
3) =5
(4) =
() =
n(6) =1

Nl W N |-
=

32

Example of Using Permutations

“Goes to” representation of a permutation:

Original row with index r goes to row 7(r)
Recall: Then MinHash, (S) is the index of the first row

of the permuted column C with value 1

1 10 1) = 0
2 11 42)=4 1
3 |0 #x3)= 0
4 |1 | 72(4)=2 1

Thus, h,,;, ,(C)=2

33

Min-Hashing on Matrices

Recall:
Rows = elements (shingles)
Columns = sets (documents)

1inrow e and column s if and only if e
is a member of s

For each column (= set):

We use several (e.g., 100)
independent hash functions (that
is, permutations) to create a
signature of a column

Shingles

Documents
1 |1 |1
1 |1 |O
O |1 |0
O |0 |O
1 |0 |O
1 |1 |1
1 |0 |1

34

Value n at position p means:
“previous row p goes to row n
in the new ordering”

Min-Hashing Example

2"d element of the permutation
is the firsttomaptoal

Inputy/atrix (Shing

ocuments) ,)
Signature matrix M

3 1 v 0] 1 0]
T ~
31214~ &\ o |O ‘9\\
yARER W 0 ‘1\ O |1
6[(31|2] |0 |1 0\\1\ /
1([6]|6 0] 1) 1 \ 4t element of the permutation
Is the firstto maptoal

5117 l|1 1 0] 1 0]
411515 1 0] 1 0]

35

Value n at position p means: M|n_HaSh|ng Example

“previous row p goes to row
in the new ordering”

Permutation t Input matrix (Shingles x Documents _ _
P (9) Signature matrix M

1413 * 0 1 © 2 |1 |2 |1
1 0] o) 1
3124 2 (1 |4 |1
1 0] 1 o) 1
/ / 1 (2 |1 |2
61132 |[o |12 |0 |1 >
1116116 0 1 Heuristic for computing minhash for a permutation
specification ,column"™ P and an input X:
Set k=1
1 1
> ||/ O 1. InP, search forrow r with value k.
411515 1 |o 2 IsX[r]==1?Yes=>Minhashisr, finished.

3. No=>k:=k+1, repeat the loop from #1.

— v

The Min-Hash Property

= Choose a random permutation

= Claim: Pr[h_(C,) = h(C,)] =sim(C,, C,)

l.e. the probability that the minhash-values
h_(C,) of C,and h_(C,) of C, agree (under the
permutation)

is exactly

the Jaccard-similarity of C; and C, .

37

“Proof”: Four Types of Rows

Given cols C, and C,, rows may be classified as:

gl C2
A 1 1 a = num rows of type A,
3 1 0 b = num rows of type B,
C = etc.
C 0 1 Disjunctive row sets!
D 0 0

Note: Jaccard-sim. is: sim(C,, C,) = a/(a +b +c)
Then: Pr[h(C,) = h(C,)] = Sim(C,, C,)
Go down the permuted cols C, and C, until we see a 1 (in any of
both columns)
There are a+b+c rows at which we can stop
The prob. that we stopped at type-A row is a/(a+b+c)
If it’s a type-A row, then h(C,) = h(C,); h(C,)#h(C,) for types B38/C

Min-Hashing Example

Permutation t Input matrix (Shingles x Documents _ .
P (9) Signature matrix M

o 1 54| 2 T T i i 2 (1 |2 |1
3[2ll4] [|o |0 |1 2 =2 [z =
0] 1 O 1

Al U 1 2 |1 2
61132 |[o |12 |0 |1 >
1(|6]|6] |Oo |2 |0 |12 Similarities:

1-3 2-4 1-2 3-4
S| |1t 1° |1t |° Col/Col| 0.75 0.75 0 o
411515 [|o |2 |o Sig/Sig| 0.67 1.00 0 ©

Similarity for Signatures

= We know: Pr[h_(C,) = h_(C,)] = sim(C,, C,)
= We are interested in sim(C,, C,)
= => We need to estimate Pr[h_(C,) = h_(C,)]
= But testing h_(C,) = h_(C,) gives us only true or false!

= |dea (similar to Monte-Carlo methods):

= Given a random variable X with values 0, 1 and a
distribution (1-p, p) : sample X many times to estimate p!

= => Use many different min-hash functions and compute
the fraction of cases in which they agree

= Definition: the similarity of two signatures is the
fraction of the hash functions in which they agree
= This approximates sim(C,, C,)

40

Min-Hash Signatures

Pick K=100 random permutations of the rows
Think of sig(C) as a column vector

sig(C)[i] = the index of the first row that hasa 1 in
column C, according to the i-th permutation, i.e.

sig(C)[i] = min (m;(C))
Note: The sketch (signature) of document C is
small ~100 numbers!

We achieved our goal! We “compressed”
long bit vectors into short signatures

41

Implementation /1

Permuting rows even once is very expensive
Approximate permutation by a hash function h;

h{x) = [((2a-x+b) mod p) mod N] + 1

a, b: random integers;
p:aprime (p > N);

N: #rows in the matrix

h.is possibly not injective, but errors are rare => OK
Pick about K = 100 such hash functions h,

1
2
3
4

a
b
C
d

hi(1) =3
hi(2) =4
h(3)=1
hi(4) =2

C
d
a
b

42

Implementation /2

Pick about K =100 such hash functions h;,

Intuition: for fixed C and h,, find the smallest value h(r)
over all rows r with C(r) =1

One-pass implementation:

For each column C and hash-function h; prepare a
“slot” (variable) sig(C)][i] for the min-hash value

Initialize all sig(C)][i] = o
Scan rows of C looking for 1s, with g = row index
If row q has 1 in column C, then for each h, (i=1..100):

If hi(q) < sig(C)[i], then sig(C)[i] « h{(q)

43

Implementation /3

For fixed Cand h;:
Find the smallest value h,(r) over all rows r with C(r) = 1

Scan rows looking for 1s
If row g has 1 in column C, then for each h;:

If h{q) < sig(C)[i], then sig(C)[i] « h(q)

Example: fixed C and h,

C sig(C)[i] sig(Q)[i]
S=1{2,3} 10 h(1)=3 o0
a 2 21 h@=4 4
4 1 S 31 hE=1 !
4 | 0| h()=2 1

44

Thank you.

Questions?

MH-Property: Detailed Proof

O O
Detailed proof: 1|1
O 0]

Let X be a set (of shingles), ye X an element
Then: Pr[rt(y) = min(n(X))] = 1/| X] O |1

Itis equally likely that any ye X'is mapped to the min|, | 5
Let y be s.t. nt(y) = min(n(C,UC,))

Then either: m(y) = min(n(C,)) ify € C;, or one of the wo
nly) = min(n(C,)) ify € C, 1 atposiiony

So the prob. that both are true is the prob.y € C, N C,

Pr[min(n(C,))=min(n(C,))]=| C;NC,|/|C, LG, |

=sim(C,, C,)

46

