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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/




 A hash function h: D→R maps objects from a (usually 
huge) domain space D to a (smaller) range R of 
consecutive integers (“buckets”) 

▪ E.g. D = set of all files in HDFS, R = [0,…,b-1], b=10000

 Intuitively, h computes a short signature of an object
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D

huge & sparse

R: small 
& dense

h

 h is in general not 
injective => collisions
possible (i.e. h(x)=h(y) 
for x ≠y)



 Another view: mapping from a sparse storage for D 
to dense storage (for R)

 A table containing all possible objects in D would be 
too large, but a table for all buckets in R is possible

 Implementation?

 x D is treated as 
integer

 h(x) = x mod b (b 
preferably a prime)
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 Problem of storing and fast search for elements 
is very common => optimized data structures

 Java

▪ HashSet: a set implementation

▪ HashMap: for storing pairs <key, value> and fast  
finding of values by a key 

▪ TreeMap: also for <key, value>, use balanced trees

 Python, C++ (STL):

▪ dictionary, uses hashing
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 Solution 1: sorted table 

▪ Storage: sort all existing elements by their IDs, 
store IDs (or references) in a table T

▪ Query for element q: binary search for q.ID in T 
▪ Assume that q is like a number, e.g. a bit sequence

 Solution 2: bit array
▪ Storage: Create a huge bit array A covering 

whole D and set A[x.ID] = 1 iff x M

▪ Query for q: make a lookup A[q.ID]
▪ True iff q is in the set M

▪ Very fast but we need a huge and sparse array 
(e.g. elements = strings of fixed length)
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 Solution 3: hash table
 Storage and setup: 

▪ Fix an integer b  c*|M| and a hash fn h:D→R, R = [0,..,b-1]

▪ Create an array T of size b with lists (at first: empty lists)

▪ If x M: update list L = T[h(x)] by adding x (or a ref) to L

 Query for element q: 
 Make a lookup L= T[h(q)]; if list L not 

empty, check q  L => yes iff q M

 Runtime, space requirements?
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▪ Runtime: fast, O(1) for search and 
inserting

▪ Space: b references to lists, b lists, plus 
approx. size of all elements in M

D

R=[0,..,b-1]

Conflict
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Programming in Spark & MapReduce



 Many problems can be expressed as 
finding “similar” objects:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Points in the same cluster (clustering)

▪ Pages with similar words
▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets
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 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are 

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐



(𝑵 = #data points), see hierarchical clustering

 MAGIC: This can be done in 𝑂 𝑁 !! How?
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 Goal: Find near-neighbors in high-dim. space
▪ We formally define “near neighbors” as 

points that are a “small distance” apart
 We need a “distance” metric 
 E.g. Jaccard distance/similarity (recall)
▪ The Jaccard similarity of two sets is the size of 

their intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

▪ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|
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3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8



 Goal: Given a large number (𝑁 in the millions or 
billions) of documents, find “near duplicate” pairs

 Applications:
▪ Mirror websites, or approximate mirrors
▪ Don’t want to show both in search results

▪ Similar news articles at many news sites
▪ Cluster articles by “same story”

 Problems:
▪ Too many documents to compare all pairs

▪ Documents are so large or so many that they cannot 
fit in main memory

▪ Many small pieces of one document can appear 
out of order in another
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 Suppose we need to find near-duplicate 
documents among N = 1 million documents

 Naïvely, we would have to compute pairwise 
Jaccard similarities for every pair of docs

 How long (at 106 comparisons/sec)?

▪ 𝑁(𝑁 − 1)/2 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec, 
it would take 5 days

 For 𝑁 = 10 million, it takes more than a year…
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1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Identify pairs of 
signatures likely to be from similar 
documents

4. Final filtering: We get (few) candidate pairs! 
=> Those can be checked by pairwise 
comparisons
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 Step 1: Shingling: Convert documents to sets

 Simple approaches:

▪ Document = set of words appearing in document

▪ Document = set of “important” words

 Don’t work well for this application; Why?

 Need to account for ordering of words!
 A different way: Shingles!
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 A k-shingle (or k-gram) for a document is a 
sequence of k (consecutive) tokens that 
appears in the doc

▪ Tokens can be characters, words or something 
else, depending on the application

 Assume e.g.: tokens = characters

 Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}

▪ Option: Shingles as a bag (multiset), count “ab” 
twice: S’(D1) = {ab, bc, ca, ab}
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 Now: doc. D1 is a set of its k-shingles: C1=S(D1)
 Equivalently, each document is a 0/1 vector in 

the space of k-shingles

▪ Each unique shingle is a dimension

▪ Vectors are very sparse

 For sets, a natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|
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 Documents that have lots of shingles in 
common have similar text (content)

▪ Even if the text appears in different order

 Caveat: You must pick k large enough, or most 
documents will have most shingles

▪ k = 5 is OK for short documents

▪ k = 10 is better for long documents
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 To compress long shingles, we can hash them 
to (say) 4 bytes (value of a hash function)

 => We can represent a document by the set of 
hash values of its k-shingles

 Example: k=2; document D1= abcab:

▪ Set of 2-shingles: S(D1) = {ab, bc, ca}

▪ Set of hash val’s of the shingles e.g.: {1, 5, 7}

▪ Note: Non-bijective, i.e. two documents could 
(rarely) appear to have shingles in common, when 
in fact only the hash-values were shared
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Minhashing:Converting large sets to short 
signatures, while preserving similarity



 Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

▪ Encode sets using 0/1 (bit, Boolean) vectors 

▪ Interpret set intersection as bitwise AND, and 
set union as bitwise OR => fast

 Example: C1 = 10111; C2 = 10011

▪ Size of intersection = 3; size of union = 4

▪ Jaccard similarity (not distance) = 3/4

▪ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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 Rows = elements (shingles)
 Columns = sets (documents)
▪ 1 in row e and column s if and only 

if e is a member of s

▪ Column similarity is the Jaccard 
similarity of the corresponding 
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:
▪ Example: sim(C1 ,C2) = ?

▪ Size of intersection = 3; size of union = 6, 
Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
26
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 So far:

▪ Documents → Sets of shingles

▪ Represent sets as Boolean vectors in a matrix

 Next goal: Find similar columns from small 
(similar) signatures

▪ Similarity of columns == similarity of signatures
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 (Recall) Next Goal: Find similar columns from small 
signatures

 Naïve approach:

▪ 1) Signatures of columns: small summaries of columns

▪ 2) Examine pairs of signatures to find similar columns

▪ Essential: Similarities of signatures and columns are related

▪ 3) Optional: Check that columns with similar signatures 
are really similar

 But .. comparing all pairs of signatures may take too 
much time: Job for LSH
▪ Later
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 Key idea: map each column C to a small signature
h(C), such that:

▪ (1) h(C) is small enough that the signature fits in RAM

▪ (2) sim(C1, C2) is the same as the “similarity” of 
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)
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 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on 
the similarity metric sim(C1,C2)

▪ Not all similarity metrics have a suitable 
hash function

 But there is a suitable hash function for 
the Jaccard similarity: it is called MinHash
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 Def.:  Let h be a hash function that maps the 
members of S to distinct integers, and for any 
set S define MinHashh(S) = hmin(S) to be the 
minimum value of h(x)

 Example: 
▪ Assume S = {2, 3, 6} and 

▪ h(2) = 4, h(3) = 5, h(6) = 1

 What is hmin(S)?

 Of course, hmin(S) = 1
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S = {2, 3, 6} 

4 5 1

https://en.wikipedia.org/wiki/MinHash
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 Recall: we represent each set as a 
Boolean vector C (here: S = {2, 3, 6})

 Assume that a hash function h is 
given by a (random) permutation 
 of the rows of the Boolean vector  

▪ h fulfills: “… maps the members of S to 
distinct integers” 

 Then MinHashh(S) is the index of the 
first row of the permuted column C (= 
rows ordered by vals of  ) with value 1

 => Again, h ,min(S) = 1
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 “Goes to” representation of a permutation:

▪ Original row with index r goes to row (r)
 Recall: Then MinHashh(S) is the index of the first row

of the permuted column C with value 1

 Thus, hmin,  (C) = 2
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 Recall:

▪ Rows = elements (shingles)

▪ Columns = sets (documents)

▪ 1 in row e and column s if and only if e
is a member of s

 For each column (= set):

▪ We use several (e.g., 100) 
independent hash functions (that 
is, permutations) to create a 
signature of a column
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Value n at position p means: 
“previous row p goes to row n 

in the new ordering”
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Value n at position p means: 
“previous row p goes to row n 

in the new ordering”
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Heuristic for computing minhash for a permutation
specification „column“ P and an input X:
Set k= 1
1. In P, search for row r with value k.
2. Is X[r] == 1? Yes => Minhash is r, finished.
3. No => k := k+1, repeat the loop from #1.



 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

▪ I.e. the probability that the minhash-values  
h(C1) of C1 and h(C2) of C2 agree (under the 
permutation ) 

▪ is exactly

▪ the Jaccard-similarity of C1 and C2 .
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 Given cols C1 and C2, rows may be classified as:
C1 C2

A 1 1

B 1 0

C 0 1

D 0 0
 Note: Jaccard-sim. is: sim(C1, C2) = a/(a +b +c)
 Then: Pr[h(C1) = h(C2)] = Sim(C1, C2) 

▪ Go down the permuted cols C1 and C2 until we see a 1 (in any of 
both columns)

▪ There are a+b+c rows at which we can stop

▪ The prob. that we stopped at type-A row is a/(a+b+c)

▪ If it’s a type-A row, then h(C1) = h(C2); h(C1)≠h(C2) for types B/C
38

a = num rows of type A,
b = num rows of type B, 
c = etc.
Disjunctive row sets!
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 We are interested in sim(C1, C2)
▪ => We need to estimate Pr[h(C1) = h(C2)] 

 But testing h(C1) = h(C2) gives us only true or false!

 Idea (similar to Monte-Carlo methods): 
▪ Given a random variable X with values 0, 1 and a 

distribution (1-p, p) : sample X many times to estimate p!  

▪ => Use many different min-hash functions and compute 
the fraction of cases in which they agree

 Definition: the similarity of two signatures is the 
fraction of the hash functions in which they agree

 This approximates sim(C1, C2)
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 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector

▪ sig(C)[i] = the index of the first row that has a 1 in 
column C, according to the i-th permutation, i.e.

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is 
small  ~𝟏𝟎𝟎 numbers!

 We achieved our goal! We “compressed” 
long bit vectors into short signatures
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 Permuting rows even once is very expensive
 Approximate permutation by a hash function hi

▪ hi(x) = [((a·x+b) mod p) mod N] + 1

▪ a, b: random integers; 
p: a prime (p > N); N: #rows in the matrix

▪ hi is possibly not injective, but errors are rare => OK

 Pick about K = 100 such hash functions hi
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 Pick about K = 100 such hash functions hi

One-pass implementation:

▪ For each column C and hash-function hi prepare a 
“slot” (variable) sig(C)[i] for the min-hash value

▪ Initialize all sig(C)[i] = 

▪ Scan rows of C looking for 1s, with q = row index

▪ If row q has 1 in column C, then for each hi (i=1..100):

▪ If hi(q) < sig(C)[i], then sig(C)[i]  hi(q)
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Intuition: for fixed C and hi, find the smallest value hi(r) 
over all rows r with C(r) = 1



For fixed C and hi: 
Find the smallest value hi(r) over all rows r with C(r) = 1 

Scan rows looking for 1s
▪ If row q has 1 in column C, then for each hi :
▪ If hi(q) < sig(C)[i], then sig(C)[i]  hi(q)

Example: fixed C and hi
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Questions?



 Detailed proof:

▪ Let X be a set (of shingles), y X an element

▪ Then: Pr[(y) = min((X))] = 1/|X|

▪ It is equally likely that any y X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

▪ So the prob. that both are true is the prob. y  C1  C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|
= sim(C1, C2) 
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