
Lecture 09

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommender
systems

Association
Rules

Duplicate
document
detection

3

Programming in Spark & MapReduce

Supermarket shelf management: Market-basket
model:

 Goal: Identify items that are bought together by
sufficiently many customers

 Approach: Process the sales data collected with
barcode scanners to find dependencies among
items

 A classic rule:

▪ If someone buys diaper and milk, then he/she is
likely to buy beer

4

 A large set of items

▪ e.g., things sold in a
supermarket

 A large set of baskets

▪ Each basket is a
small subset of items

▪ E.g., the things one
customer buys on one day

 Goal: discover association rules

▪ People who bought {x,y,z} tend to buy {v,w}

▪ Amazon!
5

Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items in a basket

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

 Items = products; Baskets = sets of products
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of
data about what customers buy together

▪ Tells how typical customers navigate stores, lets
them position tempting items

▪ Suggests tie-in “tricks”, e.g., run sale on diapers
and raise the price of beer

 Amazon’s people who bought X also bought Y

6

First: Define
Frequent itemsets

Association rules: Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + refinements

7

 Simplest question: Find sets of items that
appear together “frequently” in baskets

 Support for itemset I: Number of baskets
containing all items in I

▪ (Often expressed as a fraction
of the total number of baskets)

 Given a support threshold s,
frequent itemsets are sets of
items that appear in
at least s baskets

8

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of

{Beer, Bread} = 2

 Items = {milk, coke, pepsi, beer, juice}
 Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

9

, {b,c} , {c,j}.{m,b}

 An association rule R is an “if-then” rule about
the contents of baskets

 A-rule has form {𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} → {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}
 R applies “if a basket contains all in
{𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} then it also contains {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}“

 For 𝑩 = {𝑚, 𝑐, 𝑏}, which a-rules apply?
 𝑚 → 𝑐, 𝑏 , 𝑚, 𝑐 → 𝑏
 In general, for every subset 𝑨 of 𝑰 we can

generate an ass. rule 𝑨 → 𝑰\𝑨
 But most rules are not significant – why?

10

 Rule 𝑰 → 𝑱 applies “if a basket contains all in 𝐼 =
{𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} then it also contains all in 𝐽 = {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}“

 Intuitively, “good” rules should have (B=basket) ..

▪ High confidence: If 𝐼 ⊆ 𝐵, then 𝐽 ⊆ 𝐵 (= rule applies)

▪ High rule support: Rule applies for many baskets

 Support of an ass-rule is the number of baskets
containing both 𝐼 and 𝐽, i.e. support(I J) (link)

▪ Note: for each such basket rule applies!

 Confidence of an ass-rule is the probability that
it applies if 𝐼 ⊆ 𝐵:

11

conf(𝐼 → 𝑗) =
support(𝐼 ∪ 𝐽)

support(𝐼)

http://www.academia.edu/648890/Support_vs_Confidence_in_Association_Rule_Algorithms

 Not all high-confidence rules are interesting

▪ The rule X → milk may have high confidence for
many itemsets X, because milk is just purchased very
often (independent of X) and the confidence is high

 Interest of an association rule I → J:
difference between its confidence and the
fraction of baskets that contain J = {j1, .., jp}

▪ Interesting rules are those with high positive or
negative interest values (usually above 0.5)

12

Interest(𝐼 → 𝐽) = conf(𝐼 → 𝐽) − Pr[𝐽]

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c

▪ Confidence = 2/4 = 0.5

▪ Interest = |0.5 – 5/8| = 1/8

▪ Item c appears in 5/8 of the baskets

▪ Rule is not very interesting!

13

Set m,b m,b,c c

B1 1 1 1

B2

B3 1

B4 1

B5 1

B6 1 1 1

B7 1

B8 1

 Problem: Find all association rules with
support ≥s and confidence ≥c

 Hard part: Finding the frequent itemsets!

▪ If {i1, i2,…, ik} → J has high support and
confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j1,..,jp} will be “frequent”

14

)support(

)support(
)conf(

I

jI
jI

=→

 Step 1: Find all frequent itemsets I

▪ (we will explain this next)

 Step 2: Rule generation

▪ For every subset A of I, generate a rule A → I \ A

▪ Since I is frequent, A is also frequent

▪ Variant 1: Single pass to compute the rule confidence

▪ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

▪ Variant 2:
▪ Observation: If A,B,C→D is below confidence, so is A,B→C,D

▪ Can generate “bigger” rules from smaller ones!

▪ Output the rules above the confidence threshold

15

)support(

)support(
)conf(

I

jI
jI

=→

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Thresholds: support s = 3, confidence c = 0.75
 1) Frequent itemsets:
▪ Singletons and {b,m} {b,c} {c,m} {c,j} {m,c,b}

 2) Generate rules:
▪ b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5

▪ m→b: c=4/5 … b,m→c: c=3/4

▪ b→c,m: c=3/6

16

 Back to finding frequent itemsets
 Typically, data is kept in flat files

rather than in a database system:
▪ Stored on disk

▪ Stored basket-by-basket

▪ Baskets are small but we have
many baskets and many items
▪ Expand baskets into pairs, triples, etc.

as you read baskets

▪ Use k nested loops to generate all
sets of size k

18

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,

and boundaries between

baskets are –1.

Note: We want to find frequent itemsets. To find them, we

have to count them. To count them, we have to generate them.

19

 The true cost of mining disk-resident data is
usually the number of disk I/Os

 In practice, association-rule algorithms read
the data in passes – all baskets read in turn

 We measure the cost by the number of
passes an algorithm makes over the data

20

 For many frequent-itemset algorithms,
main-memory is the critical resource

▪ As we read baskets, we need to count
something, e.g., occurrences of pairs of items

▪ The number of different things we can count
is limited by main memory

▪ Swapping counts in/out is a disaster

 The hardest problem often turns out to be
finding the frequent pairs of items {𝒊𝟏, 𝒊𝟐}

▪ Why? Freq. pairs are common, freq. triples are rare

▪ Why? Probability of being frequent drops exponentially
with size; number of sets grows more slowly with size

 First concentrate on pairs, then extend
 The approach:

▪ We always need to generate all the itemsets

▪ But we would only like to count (keep track) of those
itemsets that in the end turn out to be frequent

21

Naïve approach to finding frequent pairs
 Read file once, counting in main memory

the occurrences of each pair:

▪ From each basket of n items, generate its
n(n-1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

▪ Remember: #items can be on the order of 1M
(Wal-Mart) or 10B (Web pages)

▪ Suppose: 106 items, pair counts are 4-byte integers

▪ Number of pairs of items: 106(106-1)/2 = 5*1011

▪ Therefore, 2*1012 (2000 gigabytes) of memory needed
22

Two approaches:
 Approach 1: Count all pairs using a matrix
 Approach 2: Keep a table of triples [i, j, c] =

“the count of the pair of items {i, j} is c.”
▪ If integers and item ids are 4 bytes, we need

approximately 12 bytes for pairs with count > 0

▪ Plus some additional overhead for the hashtable
Note:
 Approach 1 only requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair

(but only for pairs with count > 0)

23

24

4 bytes per pair

Triangular Matrix (dense) Triples (sparse)

12 per
occurring pair

 Approach 1: Triangular Matrix
▪ n = total number items

▪ Count pair of items {i, j} only if i<j

▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1

▪ Total number of pairs n(n –1)/2; total bytes= 2n2

▪ Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per occurring pair

(but only for pairs with count > 0)
▪ Beats approach 1 if less than 1/3 of

possible pairs actually occur

25

 Approach 1: Triangular Matrix
▪ n = total number items

▪ Count pair of items {i, j} only if i<j

▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1

▪ Total number of pairs n(n –1)/2; total bytes= 2n2

▪ Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair

(but only for pairs with count > 0)
▪ Beats Approach 1 if less than 1/3 of

possible pairs actually occur

26

Problem is if we have too
many items so the pairs
do not fit into memory.

Can we do better?

 A two-pass approach called
A-Priori limits the need for
main memory

 Key idea: monotonicity

▪ If a set of items 𝑰 appears at
least 𝒔 times, so does every subset 𝑱 of 𝑰

 Contrapositive for pairs:
If item 𝒊 does not appear in 𝒔 baskets, then no
pair including 𝒊 can appear in 𝒔 baskets

 So, how does A-Priori find frequent pairs?
28

 Pass 1: Read baskets and count in main memory
the occurrences of each individual item
▪ Requires only memory proportional to #items

 Items that appear ≥ 𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main
memory only those pairs where both elements
are frequent (from Pass 1)
▪ Requires memory proportional to square of frequent

items only (for counts)

▪ Plus a list of the frequent items (so you know what must
be counted)

29

30

Item counts

Pass 1 Pass 2

Frequent items

M
a
in

 m
e
m

o
ry Counts of

pairs of

frequent items

(candidate

pairs)

 You can use the
triangular matrix
method with n = number
of frequent items
▪ May save space compared

with storing triples
 Trick: re-number

frequent items 1,2,…
and keep a table relating
new numbers to original
item numbers

31

Item counts

Pass 1 Pass 2

Counts of pairs

of frequent

items

Frequent

items

Old

item

id’s

M
a
in

 m
e
m

o
ry

Counts of

pairs of

frequent items

32

 For each k, we construct two sets of
k-tuples (sets of size k):

▪ Ck = candidate k-tuples = those that might be
frequent sets (support > s) based on information
from the pass for k–1

▪ Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items

 Hypothetical steps of the A-Priori algorithm

▪ C1 = { {b} {c} {j} {m} {n} {p} }

▪ Count the support of itemsets in C1

▪ Prune non-frequent: L1 = { b, c, j, m }

▪ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

▪ Count the support of itemsets in C2

▪ Prune non-frequent: L2 = { {b,m} {b,c} {c,m} {c,j} }

▪ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

▪ Count the support of itemsets in C3

▪ Prune non-frequent: L3 = { {b,c,m} }
33

** Note here we generate new candidates by

generating Ck from Lk-1 and L1.

But that one can be more careful with candidate

generation. For example, in C3 we know {b,m,j}

cannot be frequent since {m,j} is not frequent

**

 One pass for each k (itemset size)
 Needs room in main memory to count

each candidate k–tuple
 For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most
memory

 Many possible extensions:
▪ Association rules when items are in a taxonomy
▪ Bread, Butter → FruitJam

▪ BakedGoods, MilkProduct → PreservedGoods

▪ Lower the support s as itemset gets bigger
34

 Observation:
In pass 1 of A-Priori, most memory is idle

▪ We store only individual item counts

 => Use this idle RAM to reduce RAM used in pass 2!
 Pass 1 of PCY: In addition to item counts, maintain a

hash table 𝒉 with as many buckets as fit in memory
▪ Keep a count for each bucket into which pairs of items are

hashed (for each bucket just keep the count, not the actual pairs!)

 Why? If a pair 𝑝 is frequent, “its” bucket 𝒉(𝑝) will
receive count above a threshold 𝑠 for frequent pairs!

 Pass 2 of PCY:
Count only those pairs that hash to frequent buckets

36

37

Hash

table

Item counts

(later)

Pass 1 Pass 2

Frequent items

Hash table

ℎ for pairs

M
a
in

 m
e
m

o
ry

Counts of

candidate

pairs

FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:

▪ Pairs of items need to be generated from the input
file; they are not present in the file

▪ Hash function should have many buckets, i.e. must be
likely to hash different pairs to different buckets

38

New

in

PCY

 Observation: If a bucket contains a frequent
pair, then the bucket is surely frequent

 However, even without any frequent pair,
a bucket can still be frequent

▪ So, we cannot use the hash to eliminate any
member (pair) of a “frequent” bucket

 But, for a bucket with total count less than s,
none of its pairs can be frequent ☺

▪ All pairs that hash to this “infrequent” bucket can
be eliminated as candidates

39

 Replace the buckets by a bit-vector:

▪ 1 means the bucket count exceeded the support s
(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits,
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent
and list them for the second pass

40

41

 Count all pairs {𝑖, 𝑗} that meet the
conditions for being a candidate pair:

1. Both 𝒊 and 𝒋 are frequent items

2. The pair {𝑖, 𝑗} hashes to a bucket whose bit in
the bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the
pair to have a chance of being frequent

42

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table

for pairs

M
a
in

 m
e
m

o
ry

Counts of

candidate

pairs

43

 Buckets require a few bytes each:

▪ Note: we do not have to count past 𝒔

▪ #buckets is O(main-memory size)

 On second pass, a table of (item, item, count)
triples is essential (we cannot use triangular
matrix approach)

▪ Thus, hash table must eliminate approx. 2/3
of the candidate pairs for PCY to beat A-Priori

Questions?

 A general many-to-many mapping
(association) between two kinds of things

▪ But we ask about connections among “items”,
not “baskets”

 For example:

▪ Finding communities in graphs (e.g., Twitter)

46

 Finding communities in graphs (e.g., Twitter)
 Baskets = nodes; Items = outgoing neighbors

▪ Searching for complete bipartite subgraphs Ks,t of a
big graph

47

 How?

▪ View each node i as a
basket Bi of nodes i it points to

▪ Ks,t = a set Y of size t that
occurs in s buckets Bi

▪ Looking for Ks,t→ set of
support s and look at layer t –
all frequent sets of size t

…

…

A dense 2-layer graph

s
n
o
d
e
s

t
n
o
d
e
s

 To reduce the number of rules we can
post-process them and only output:

▪ Maximal frequent itemsets:
No immediate superset is frequent

▪ Gives more pruning

or

▪ Closed itemsets:
No immediate superset has the same count (> 0)

▪ Stores not only frequent information, but exact counts

48

Support Maximal(s=3) Closed
A 4 No No
B 5 No Yes
C 3 No No
AB 4 Yes Yes
AC 2 No No
BC 3 Yes Yes
ABC 2 No Yes

49

Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.

