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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/
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Programming in Spark & MapReduce



Supermarket shelf management: Market-basket 
model:

 Goal: Identify items that are bought together by 
sufficiently many customers

 Approach: Process the sales data collected with 
barcode scanners to find dependencies among 
items

 A classic rule:

▪ If someone buys diaper and milk, then he/she is 
likely to buy beer
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 A large set of items

▪ e.g., things sold in a 
supermarket

 A large set of baskets

▪ Each basket is a 
small subset of items

▪ E.g., the things one 
customer buys on one day

 Goal: discover association rules

▪ People who bought {x,y,z} tend to buy {v,w}

▪ Amazon!
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Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items in a basket 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
 

Input:

Output:



 Items = products; Baskets = sets of products 
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of 
data about what customers buy together

▪ Tells how typical customers navigate stores, lets 
them position tempting items

▪ Suggests tie-in “tricks”, e.g., run sale on diapers 
and raise the price of beer

 Amazon’s people who bought X also bought Y
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First: Define
Frequent itemsets

Association rules: Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + refinements
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 Simplest question: Find sets of items that 
appear together “frequently” in baskets

 Support for itemset I: Number of baskets 
containing all items in I

▪ (Often expressed as a fraction 
of the total number of baskets)

 Given a support threshold s, 
frequent itemsets are sets of 
items that appear in 
at least s baskets
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 

{Beer, Bread} = 2



 Items = {milk, coke, pepsi, beer, juice}
 Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},
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, {b,c} , {c,j}.{m,b}



 An association rule R is an “if-then” rule about 
the contents of baskets

 A-rule has form {𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} → {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}
 R applies  “if a basket contains all in 
{𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} then it also contains {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}“ 

 For 𝑩 = {𝑚, 𝑐, 𝑏}, which a-rules apply? 
 𝑚 → 𝑐, 𝑏 , 𝑚, 𝑐 → 𝑏
 In general, for every subset 𝑨 of 𝑰 we can 

generate an ass. rule 𝑨 → 𝑰\𝑨
 But most rules are not significant – why? 
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 Rule 𝑰 → 𝑱 applies  “if a basket contains all in 𝐼 =
{𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} then it also contains all in 𝐽 = {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}“ 

 Intuitively, “good” rules should have (B=basket) ..

▪ High confidence: If 𝐼 ⊆ 𝐵, then 𝐽 ⊆ 𝐵 (= rule applies)

▪ High rule support: Rule applies for many baskets

 Support of an ass-rule is the number of baskets 
containing both 𝐼 and 𝐽, i.e. support(I  J) (link)

▪ Note: for each such basket rule applies!

 Confidence of an ass-rule is the probability that 
it applies if 𝐼 ⊆ 𝐵:

11

conf( 𝐼 → 𝑗) =
support( 𝐼 ∪ 𝐽)

support( 𝐼)

http://www.academia.edu/648890/Support_vs_Confidence_in_Association_Rule_Algorithms


 Not all high-confidence rules are interesting

▪ The rule X → milk may have high confidence for 
many itemsets X, because milk is just purchased very 
often (independent of X) and the confidence is high

 Interest of an association rule I → J: 
difference between its confidence and the 
fraction of baskets that contain J = {j1, .., jp}

▪ Interesting rules are those with high positive or 
negative interest values (usually above 0.5)

12

Interest( 𝐼 → 𝐽) = conf( 𝐼 → 𝐽) − Pr[ 𝐽]



B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c

▪ Confidence = 2/4 = 0.5

▪ Interest = |0.5 – 5/8| = 1/8

▪ Item c appears in 5/8 of the baskets

▪ Rule is not very interesting!
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Set m,b m,b,c c

B1 1 1 1

B2

B3 1

B4 1

B5 1

B6 1 1 1

B7 1

B8 1



 Problem: Find all association rules with 
support ≥s and confidence ≥c

 Hard part: Finding the frequent itemsets!

▪ If {i1, i2,…, ik} → J has high support and 
confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j1,..,jp} will be “frequent”
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 Step 1: Find all frequent itemsets I

▪ (we will explain this next)

 Step 2: Rule generation

▪ For every subset A of I,  generate a rule A → I \ A

▪ Since I is frequent, A is also frequent

▪ Variant 1: Single pass to compute the rule confidence

▪ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

▪ Variant 2: 
▪ Observation: If A,B,C→D is below confidence, so is A,B→C,D

▪ Can generate “bigger” rules from smaller ones! 

▪ Output the rules above the confidence threshold
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B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Thresholds: support s = 3, confidence c = 0.75
 1) Frequent itemsets:
▪ Singletons and {b,m}  {b,c}  {c,m}  {c,j}  {m,c,b}

 2) Generate rules:
▪ b→m: c=4/6      b→c: c=5/6        b,c→m: c=3/5

▪ m→b: c=4/5 …                 b,m→c: c=3/4

▪ b→c,m: c=3/6
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 Back to finding frequent itemsets
 Typically, data is kept in flat files 

rather than in a database system:
▪ Stored on disk

▪ Stored basket-by-basket

▪ Baskets are small but we have 
many baskets and many items
▪ Expand baskets into pairs, triples, etc. 

as you read baskets

▪ Use k nested loops to generate all 
sets of size k
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Items are positive integers, 

and boundaries between 

baskets are –1.

Note: We want to find frequent itemsets. To find them, we 

have to count them. To count them, we have to generate them.
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 The true cost of mining disk-resident data is 
usually the number of disk I/Os

 In practice, association-rule algorithms read 
the data in passes – all baskets read in turn

 We measure the cost by the number of 
passes an algorithm makes over the data
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 For many frequent-itemset algorithms, 
main-memory is the critical resource

▪ As we read baskets, we need to count 
something, e.g., occurrences of pairs of items

▪ The number of different things we can count 
is limited by main memory

▪ Swapping counts in/out is a disaster



 The hardest problem often turns out to be 
finding the frequent pairs of items {𝒊𝟏, 𝒊𝟐}

▪ Why? Freq. pairs are common, freq. triples are rare

▪ Why? Probability of being frequent drops exponentially 
with size; number of sets grows more slowly with size

 First concentrate on pairs, then extend 
 The approach:

▪ We always need to generate all the itemsets

▪ But we would only like to count (keep track) of those 
itemsets that in the end turn out to be frequent
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Naïve approach to finding frequent pairs
 Read file once, counting in main memory 

the occurrences of each pair:

▪ From each basket of n items, generate its 
n(n-1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

▪ Remember: #items can be on the order of 1M 
(Wal-Mart) or 10B (Web pages)

▪ Suppose: 106 items, pair counts are 4-byte integers

▪ Number of pairs of items: 106(106-1)/2 = 5*1011

▪ Therefore, 2*1012 (2000 gigabytes) of memory needed
22



Two approaches:
 Approach 1: Count all pairs using a matrix
 Approach 2: Keep a table of triples [i, j, c] = 

“the count of the pair of items {i, j} is c.”
▪ If integers and item ids are 4 bytes, we need 

approximately 12 bytes for pairs with count > 0

▪ Plus some additional overhead for the hashtable
Note:
 Approach 1 only requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair 

(but only for pairs with count > 0)
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4 bytes per pair

Triangular Matrix (dense) Triples (sparse)

12 per
occurring pair



 Approach 1: Triangular Matrix
▪ n = total number items

▪ Count pair of items {i, j} only if i<j

▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1

▪ Total number of pairs n(n –1)/2; total bytes= 2n2

▪ Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per occurring pair 

(but only for pairs with count > 0)
▪ Beats approach 1 if less than 1/3 of 

possible pairs actually occur
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 Approach 1: Triangular Matrix
▪ n = total number items

▪ Count pair of items {i, j} only if i<j

▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1

▪ Total number of pairs n(n –1)/2; total bytes= 2n2

▪ Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair 

(but only for pairs with count > 0)
▪ Beats Approach 1 if less than 1/3 of 

possible pairs actually occur
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Problem is if we have too 
many items so the pairs 
do not fit into memory.

Can we do better?





 A two-pass approach called 
A-Priori limits the need for 
main memory

 Key idea: monotonicity

▪ If a set of items 𝑰 appears at 
least 𝒔 times, so does every subset 𝑱 of 𝑰

 Contrapositive for pairs:
If item 𝒊 does not appear in 𝒔 baskets, then no 
pair including 𝒊 can appear in 𝒔 baskets

 So, how does A-Priori find frequent pairs?
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 Pass 1: Read baskets and count in main memory 
the occurrences of each individual item
▪ Requires only memory proportional to #items

 Items that appear ≥ 𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main 
memory only those pairs where both elements 
are frequent (from Pass 1)
▪ Requires memory proportional to square of frequent

items only (for counts)

▪ Plus a list of the frequent items (so you know what must 
be counted)
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 You can use the 
triangular matrix 
method with n = number 
of frequent items
▪ May save space compared 

with storing triples
 Trick: re-number 

frequent items 1,2,… 
and keep a table relating 
new numbers to original 
item numbers
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 For each k, we construct two sets of
k-tuples (sets of size k):

▪ Ck = candidate k-tuples = those that might be 
frequent sets (support > s) based on information 
from the pass for k–1

▪ Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items



 Hypothetical steps of the A-Priori algorithm

▪ C1 = { {b} {c} {j} {m} {n} {p} }

▪ Count the support of itemsets in C1

▪ Prune non-frequent: L1 = { b, c, j, m }

▪ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

▪ Count the support of itemsets in C2

▪ Prune non-frequent: L2 = { {b,m} {b,c}  {c,m}  {c,j} }

▪ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

▪ Count the support of itemsets in C3

▪ Prune non-frequent: L3 = { {b,c,m} }
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** Note here we generate new candidates by 

generating Ck from Lk-1 and L1.

But that one can be more careful with candidate 

generation. For example, in C3 we know {b,m,j} 

cannot be frequent since {m,j} is not frequent

**



 One pass for each k (itemset size)
 Needs room in main memory to count 

each candidate k–tuple
 For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most 
memory

 Many possible extensions:
▪ Association rules when items are in a taxonomy
▪ Bread, Butter → FruitJam

▪ BakedGoods, MilkProduct → PreservedGoods

▪ Lower the support s as itemset gets bigger
34





 Observation: 
In pass 1 of A-Priori, most memory is idle

▪ We store only individual item counts

 => Use this idle RAM to reduce RAM used in pass 2!
 Pass 1 of PCY: In addition to item counts, maintain a 

hash table 𝒉 with as many buckets as fit in memory 
▪ Keep a count for each bucket into which pairs of items are 

hashed (for each bucket just keep the count, not the actual pairs!)

 Why? If a pair 𝑝 is frequent, “its” bucket 𝒉(𝑝) will 
receive count above a threshold 𝑠 for frequent pairs!

 Pass 2 of PCY:
Count only those pairs that hash to frequent buckets
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FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:

▪ Pairs of items need to be generated from the input 
file; they are not present in the file

▪ Hash function should have many buckets, i.e. must be 
likely to hash different pairs to different buckets
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New 

in 

PCY



 Observation: If a bucket contains a frequent 
pair, then the bucket is surely frequent

 However, even without any frequent pair, 
a bucket can still be frequent 

▪ So, we cannot use the hash to eliminate any 
member (pair) of a “frequent” bucket

 But, for a bucket with total count less than s, 
none of its pairs can be frequent ☺

▪ All pairs that hash to this “infrequent” bucket can 
be eliminated as candidates  
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 Replace the buckets by a bit-vector:

▪ 1 means the bucket count exceeded the support s
(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits, 
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent 
and list them for the second pass
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 Count all pairs {𝑖, 𝑗} that meet the 
conditions for being a candidate pair:

1. Both 𝒊 and 𝒋 are frequent items

2. The pair {𝑖, 𝑗} hashes to a bucket whose bit in 
the bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the 
pair to have a chance of being frequent
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 Buckets require a few bytes each:

▪ Note: we do not have to count past 𝒔

▪ #buckets is O(main-memory size)

 On second pass, a table of (item, item, count) 
triples is essential (we cannot use triangular 
matrix approach)

▪ Thus, hash table must eliminate approx. 2/3 
of the candidate pairs for PCY to beat A-Priori



Questions?





 A general many-to-many mapping 
(association) between two kinds of things

▪ But we ask about connections among “items”, 
not “baskets”

 For example:

▪ Finding communities in graphs (e.g., Twitter)
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 Finding communities in graphs (e.g., Twitter)
 Baskets = nodes; Items = outgoing neighbors

▪ Searching for complete bipartite subgraphs Ks,t of a 
big graph
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 How?

▪ View each node i as a 
basket Bi of nodes i it points to

▪ Ks,t = a set Y of size t that 
occurs in s buckets Bi

▪ Looking for Ks,t→ set of 
support s and look at layer t –
all frequent sets of size t

…

…

A dense 2-layer graph

s
n
o
d
e
s

t
n
o
d
e
s



 To reduce the number of rules we can 
post-process them and only output:

▪ Maximal frequent itemsets: 
No immediate superset is frequent

▪ Gives more pruning

or

▪ Closed itemsets:
No immediate superset has the same count (> 0)

▪ Stores not only frequent information, but exact counts
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Support Maximal(s=3) Closed
A 4 No No
B 5 No Yes
C 3 No No
AB 4 Yes Yes
AC 2 No No
BC 3 Yes Yes
ABC 2 No Yes
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Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.


