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A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/


High dim. 
data

Locality 
sensitive 
hashing

Clustering

Dimensio-
nality

reduction

Graph 
data

PageRank, 
SimRank

Community 
Detection

Spam 
Detection

Infinite 
data

Filtering 
data 

streams

Web 
advertising

Queries on 
streams

Machine 
learning

SVM

Decision 
Trees

Perceptron, 
kNN

Apps

Recommender 
systems

Association 
Rules

Duplicate 
document 
detection

3

Programming in Spark & MapReduce



Supermarket shelf management: Market-basket 
model:

 Goal: Identify items that are bought together by 
sufficiently many customers

 Approach: Process the sales data collected with 
barcode scanners to find dependencies among 
items

 A classic rule:

▪ If someone buys diaper and milk, then he/she is 
likely to buy beer
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 A large set of items

▪ e.g., things sold in a 
supermarket

 A large set of baskets

▪ Each basket is a 
small subset of items

▪ E.g., the things one 
customer buys on one day

 Goal: discover association rules

▪ People who bought {x,y,z} tend to buy {v,w}

▪ Amazon!
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Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items in a basket 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
 

Input:

Output:



 Items = products; Baskets = sets of products 
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of 
data about what customers buy together

▪ Tells how typical customers navigate stores, lets 
them position tempting items

▪ Suggests tie-in “tricks”, e.g., run sale on diapers 
and raise the price of beer

 Amazon’s people who bought X also bought Y
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First: Define
Frequent itemsets

Association rules: Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets

Finding frequent pairs

A-Priori algorithm

PCY algorithm + refinements
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 Simplest question: Find sets of items that 
appear together “frequently” in baskets

 Support for itemset I: Number of baskets 
containing all items in I

▪ (Often expressed as a fraction 
of the total number of baskets)

 Given a support threshold s, 
frequent itemsets are sets of 
items that appear in 
at least s baskets
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 

{Beer, Bread} = 2



 Items = {milk, coke, pepsi, beer, juice}
 Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},
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, {b,c} , {c,j}.{m,b}



 An association rule R is an “if-then” rule about 
the contents of baskets

 A-rule has form {𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} → {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}
 R applies  “if a basket contains all in 
{𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} then it also contains {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}“ 

 For 𝑩 = {𝑚, 𝑐, 𝑏}, which a-rules apply? 
 𝑚 → 𝑐, 𝑏 , 𝑚, 𝑐 → 𝑏
 In general, for every subset 𝑨 of 𝑰 we can 

generate an ass. rule 𝑨 → 𝑰\𝑨
 But most rules are not significant – why? 
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 Rule 𝑰 → 𝑱 applies  “if a basket contains all in 𝐼 =
{𝒊𝟏, 𝒊𝟐, … , 𝒊𝒌} then it also contains all in 𝐽 = {𝒋𝟏, 𝒋𝟐, … , 𝒋𝒎}“ 

 Intuitively, “good” rules should have (B=basket) ..

▪ High confidence: If 𝐼 ⊆ 𝐵, then 𝐽 ⊆ 𝐵 (= rule applies)

▪ High rule support: Rule applies for many baskets

 Support of an ass-rule is the number of baskets 
containing both 𝐼 and 𝐽, i.e. support(I  J) (link)

▪ Note: for each such basket rule applies!

 Confidence of an ass-rule is the probability that 
it applies if 𝐼 ⊆ 𝐵:
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conf( 𝐼 → 𝑗) =
support( 𝐼 ∪ 𝐽)

support( 𝐼)

http://www.academia.edu/648890/Support_vs_Confidence_in_Association_Rule_Algorithms


 Not all high-confidence rules are interesting

▪ The rule X → milk may have high confidence for 
many itemsets X, because milk is just purchased very 
often (independent of X) and the confidence is high

 Interest of an association rule I → J: 
difference between its confidence and the 
fraction of baskets that contain J = {j1, .., jp}

▪ Interesting rules are those with high positive or 
negative interest values (usually above 0.5)
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Interest( 𝐼 → 𝐽) = conf( 𝐼 → 𝐽) − Pr[ 𝐽]



B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c

▪ Confidence = 2/4 = 0.5

▪ Interest = |0.5 – 5/8| = 1/8

▪ Item c appears in 5/8 of the baskets

▪ Rule is not very interesting!
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Set m,b m,b,c c

B1 1 1 1

B2

B3 1

B4 1

B5 1

B6 1 1 1

B7 1

B8 1



 Problem: Find all association rules with 
support ≥s and confidence ≥c

 Hard part: Finding the frequent itemsets!

▪ If {i1, i2,…, ik} → J has high support and 
confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j1,..,jp} will be “frequent”
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 Step 1: Find all frequent itemsets I

▪ (we will explain this next)

 Step 2: Rule generation

▪ For every subset A of I,  generate a rule A → I \ A

▪ Since I is frequent, A is also frequent

▪ Variant 1: Single pass to compute the rule confidence

▪ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

▪ Variant 2: 
▪ Observation: If A,B,C→D is below confidence, so is A,B→C,D

▪ Can generate “bigger” rules from smaller ones! 

▪ Output the rules above the confidence threshold

15

)support(

)support(
)conf(

I

jI
jI


=→



B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Thresholds: support s = 3, confidence c = 0.75
 1) Frequent itemsets:
▪ Singletons and {b,m}  {b,c}  {c,m}  {c,j}  {m,c,b}

 2) Generate rules:
▪ b→m: c=4/6      b→c: c=5/6        b,c→m: c=3/5

▪ m→b: c=4/5 …                 b,m→c: c=3/4

▪ b→c,m: c=3/6
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 Back to finding frequent itemsets
 Typically, data is kept in flat files 

rather than in a database system:
▪ Stored on disk

▪ Stored basket-by-basket

▪ Baskets are small but we have 
many baskets and many items
▪ Expand baskets into pairs, triples, etc. 

as you read baskets

▪ Use k nested loops to generate all 
sets of size k
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Items are positive integers, 

and boundaries between 

baskets are –1.

Note: We want to find frequent itemsets. To find them, we 

have to count them. To count them, we have to generate them.
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 The true cost of mining disk-resident data is 
usually the number of disk I/Os

 In practice, association-rule algorithms read 
the data in passes – all baskets read in turn

 We measure the cost by the number of 
passes an algorithm makes over the data
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 For many frequent-itemset algorithms, 
main-memory is the critical resource

▪ As we read baskets, we need to count 
something, e.g., occurrences of pairs of items

▪ The number of different things we can count 
is limited by main memory

▪ Swapping counts in/out is a disaster



 The hardest problem often turns out to be 
finding the frequent pairs of items {𝒊𝟏, 𝒊𝟐}

▪ Why? Freq. pairs are common, freq. triples are rare

▪ Why? Probability of being frequent drops exponentially 
with size; number of sets grows more slowly with size

 First concentrate on pairs, then extend 
 The approach:

▪ We always need to generate all the itemsets

▪ But we would only like to count (keep track) of those 
itemsets that in the end turn out to be frequent
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Naïve approach to finding frequent pairs
 Read file once, counting in main memory 

the occurrences of each pair:

▪ From each basket of n items, generate its 
n(n-1)/2 pairs by two nested loops

 Fails if (#items)2 exceeds main memory

▪ Remember: #items can be on the order of 1M 
(Wal-Mart) or 10B (Web pages)

▪ Suppose: 106 items, pair counts are 4-byte integers

▪ Number of pairs of items: 106(106-1)/2 = 5*1011

▪ Therefore, 2*1012 (2000 gigabytes) of memory needed
22



Two approaches:
 Approach 1: Count all pairs using a matrix
 Approach 2: Keep a table of triples [i, j, c] = 

“the count of the pair of items {i, j} is c.”
▪ If integers and item ids are 4 bytes, we need 

approximately 12 bytes for pairs with count > 0

▪ Plus some additional overhead for the hashtable
Note:
 Approach 1 only requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair 

(but only for pairs with count > 0)
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4 bytes per pair

Triangular Matrix (dense) Triples (sparse)

12 per
occurring pair



 Approach 1: Triangular Matrix
▪ n = total number items

▪ Count pair of items {i, j} only if i<j

▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1

▪ Total number of pairs n(n –1)/2; total bytes= 2n2

▪ Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per occurring pair 

(but only for pairs with count > 0)
▪ Beats approach 1 if less than 1/3 of 

possible pairs actually occur
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 Approach 1: Triangular Matrix
▪ n = total number items

▪ Count pair of items {i, j} only if i<j

▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position (i –1)(n– i/2) + j –1

▪ Total number of pairs n(n –1)/2; total bytes= 2n2

▪ Triangular Matrix requires 4 bytes per pair
 Approach 2 uses 12 bytes per pair 

(but only for pairs with count > 0)
▪ Beats Approach 1 if less than 1/3 of 

possible pairs actually occur
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Problem is if we have too 
many items so the pairs 
do not fit into memory.

Can we do better?





 A two-pass approach called 
A-Priori limits the need for 
main memory

 Key idea: monotonicity

▪ If a set of items 𝑰 appears at 
least 𝒔 times, so does every subset 𝑱 of 𝑰

 Contrapositive for pairs:
If item 𝒊 does not appear in 𝒔 baskets, then no 
pair including 𝒊 can appear in 𝒔 baskets

 So, how does A-Priori find frequent pairs?
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 Pass 1: Read baskets and count in main memory 
the occurrences of each individual item
▪ Requires only memory proportional to #items

 Items that appear ≥ 𝒔 times are the frequent items

 Pass 2: Read baskets again and count in main 
memory only those pairs where both elements 
are frequent (from Pass 1)
▪ Requires memory proportional to square of frequent

items only (for counts)

▪ Plus a list of the frequent items (so you know what must 
be counted)
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 You can use the 
triangular matrix 
method with n = number 
of frequent items
▪ May save space compared 

with storing triples
 Trick: re-number 

frequent items 1,2,… 
and keep a table relating 
new numbers to original 
item numbers
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 For each k, we construct two sets of
k-tuples (sets of size k):

▪ Ck = candidate k-tuples = those that might be 
frequent sets (support > s) based on information 
from the pass for k–1

▪ Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items



 Hypothetical steps of the A-Priori algorithm

▪ C1 = { {b} {c} {j} {m} {n} {p} }

▪ Count the support of itemsets in C1

▪ Prune non-frequent: L1 = { b, c, j, m }

▪ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

▪ Count the support of itemsets in C2

▪ Prune non-frequent: L2 = { {b,m} {b,c}  {c,m}  {c,j} }

▪ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

▪ Count the support of itemsets in C3

▪ Prune non-frequent: L3 = { {b,c,m} }
33

** Note here we generate new candidates by 

generating Ck from Lk-1 and L1.

But that one can be more careful with candidate 

generation. For example, in C3 we know {b,m,j} 

cannot be frequent since {m,j} is not frequent

**



 One pass for each k (itemset size)
 Needs room in main memory to count 

each candidate k–tuple
 For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most 
memory

 Many possible extensions:
▪ Association rules when items are in a taxonomy
▪ Bread, Butter → FruitJam

▪ BakedGoods, MilkProduct → PreservedGoods

▪ Lower the support s as itemset gets bigger
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 Observation: 
In pass 1 of A-Priori, most memory is idle

▪ We store only individual item counts

 => Use this idle RAM to reduce RAM used in pass 2!
 Pass 1 of PCY: In addition to item counts, maintain a 

hash table 𝒉 with as many buckets as fit in memory 
▪ Keep a count for each bucket into which pairs of items are 

hashed (for each bucket just keep the count, not the actual pairs!)

 Why? If a pair 𝑝 is frequent, “its” bucket 𝒉(𝑝) will 
receive count above a threshold 𝑠 for frequent pairs!

 Pass 2 of PCY:
Count only those pairs that hash to frequent buckets
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FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:

▪ Pairs of items need to be generated from the input 
file; they are not present in the file

▪ Hash function should have many buckets, i.e. must be 
likely to hash different pairs to different buckets
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New 

in 

PCY



 Observation: If a bucket contains a frequent 
pair, then the bucket is surely frequent

 However, even without any frequent pair, 
a bucket can still be frequent 

▪ So, we cannot use the hash to eliminate any 
member (pair) of a “frequent” bucket

 But, for a bucket with total count less than s, 
none of its pairs can be frequent ☺

▪ All pairs that hash to this “infrequent” bucket can 
be eliminated as candidates  

39



 Replace the buckets by a bit-vector:

▪ 1 means the bucket count exceeded the support s
(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits, 
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent 
and list them for the second pass
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 Count all pairs {𝑖, 𝑗} that meet the 
conditions for being a candidate pair:

1. Both 𝒊 and 𝒋 are frequent items

2. The pair {𝑖, 𝑗} hashes to a bucket whose bit in 
the bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the 
pair to have a chance of being frequent
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 Buckets require a few bytes each:

▪ Note: we do not have to count past 𝒔

▪ #buckets is O(main-memory size)

 On second pass, a table of (item, item, count) 
triples is essential (we cannot use triangular 
matrix approach)

▪ Thus, hash table must eliminate approx. 2/3 
of the candidate pairs for PCY to beat A-Priori



Questions?





 A general many-to-many mapping 
(association) between two kinds of things

▪ But we ask about connections among “items”, 
not “baskets”

 For example:

▪ Finding communities in graphs (e.g., Twitter)
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 Finding communities in graphs (e.g., Twitter)
 Baskets = nodes; Items = outgoing neighbors

▪ Searching for complete bipartite subgraphs Ks,t of a 
big graph
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 How?

▪ View each node i as a 
basket Bi of nodes i it points to

▪ Ks,t = a set Y of size t that 
occurs in s buckets Bi

▪ Looking for Ks,t→ set of 
support s and look at layer t –
all frequent sets of size t

…

…

A dense 2-layer graph

s
n
o
d
e
s

t
n
o
d
e
s



 To reduce the number of rules we can 
post-process them and only output:

▪ Maximal frequent itemsets: 
No immediate superset is frequent

▪ Gives more pruning

or

▪ Closed itemsets:
No immediate superset has the same count (> 0)

▪ Stores not only frequent information, but exact counts
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Support Maximal(s=3) Closed
A 4 No No
B 5 No Yes
C 3 No No
AB 4 Yes Yes
AC 2 No No
BC 3 Yes Yes
ABC 2 No Yes
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Frequent, but
superset BC
also frequent.

Frequent, and
its only superset,
ABC, not freq.

Superset BC
has same count.

Its only super-
set, ABC, has
smaller count.


