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 Finals A:
▪ Date: 21. February 2022 (Monday)

▪ Last week of the semester  

▪ Time: 14:30 - 16:30 CET (~ 90 minutes for the exam)

▪ Location
▪ INF 230 gHS + SR INF 205

 Finals B:
▪ There will be also finals B at the start of the SoSe 2023

▪ You can choose to participate at either finals A or B
 Conditions

▪ No books, scripts, computer, smartphone etc. („Es sind
keine Hilfsmittel zugelassen“)

▪ Please bring your photo ID (Personalausweis / Pass etc.)



A substantial part of these slides come (either 
verbatim or in a modified form) from the book 
Mining of Massive Datasets 
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website 
accompanying the book: http://www.mmds.org.

http://www.mmds.org/
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Programming in Spark & MapReduce



 A large set of items

▪ e.g., things sold in a 
supermarket

 A large set of baskets

▪ Each basket is a 
small subset of items

▪ E.g., the things one 
customer buys on one day

 Goal: discover association rules

▪ People who bought {x,y,z} tend to buy {v,w}

▪ Amazon!
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Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items in a basket 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
 

Input:

Output:



 Simplest question: Find sets of items that 
appear together “frequently” in baskets

 Support for itemset I: Number of baskets 
containing all items in I

▪ (Often expressed as a fraction 
of the total number of baskets)

 Given a support threshold s, 
frequent itemsets are sets of 
items that appear in 
at least s baskets
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 

{Beer, Bread} = 2



 Back to finding frequent itemsets
 Typically, data is kept in flat files 

rather than in a database system:
▪ Stored on disk

▪ Stored basket-by-basket

▪ Baskets are small but we have 
many baskets and many items
▪ Expand baskets into pairs, triples, etc. 

as you read baskets

▪ Use k nested loops to generate all 
sets of size k
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and boundaries between 

baskets are –1.

Note: We want to find frequent itemsets. To find them, we 

have to count them. To count them, we have to generate them.



 A two-pass approach called 
A-Priori limits the need for 
main memory

 Key idea: monotonicity

▪ If a set of items I appears at 
least s times, so does every subset J of I

 Contrapositive for pairs:
If item i does not appear in s baskets, then no 
pair including i can appear in s baskets

 For pairs: find pairs by counting all candidate 
pairs of frequent singletons
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 For each k, we construct two sets of
k-tuples (sets of size k):

▪ Ck = candidate k-tuples = those that might be 
frequent sets (support > s) based on information 
from the pass for k–1

▪ Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of freq. items

(from L1)

Count

the pairs
To be

explained

Count

the items





 Observation: 
In pass 1 of A-Priori, most memory is idle

▪ We store only individual item counts

 => Use this idle RAM to reduce RAM used in pass 2!
 Pass 1 of PCY: In addition to item counts, maintain a 

hash table 𝒉 with as many buckets as fit in memory 
▪ Keep a count for each bucket into which pairs of items are 

hashed (for each bucket just keep the count, not the actual pairs!)

▪ Why? If a pair 𝑝 is frequent, “its” bucket 𝒉(𝑝) will receive 
count above a threshold 𝑠 for frequent pairs!

 Pass 2 of PCY:
Count only those pairs that hash to frequent buckets

11



FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:

▪ Pairs of items need to be generated from the input 
file; they are not present in the file

▪ Hash function should have many buckets, i.e. must be 
likely to hash different pairs to different buckets
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 Count all pairs {i, j} that meet the 
conditions for being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in 
the bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the 
pair to have a chance of being frequent
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 Limit the number of candidates to be counted

▪ Remember: Memory is the bottleneck

▪ Still need to generate all the itemsets but we only 
want to count/keep track of the ones that are frequent

 Key idea: After Pass 1 of PCY, rehash only those 
pairs that qualify for Pass 2 of PCY

▪ i and j are frequent, and 

▪ {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to 
buckets, so fewer false positives

 Requires 3 passes over the data
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 Count only those pairs {i, j} that satisfy these 
candidate pair conditions:

1. Both i and j are frequent items

2. Using the first hash function, the pair hashes to 
a bucket whose bit in the first bit-vector is 1

3. Using the second hash function, the pair hashes to 
a bucket whose bit in the second bit-vector is 1
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1. The two hash functions have to be 
independent

2. We need to check both hashes on the 
third pass

▪ If not, we would end up counting pairs of 
frequent items that hashed first to an 
infrequent bucket but happened to hash 
second to a frequent bucket
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 Key idea: Use several independent hash 
tables on the first pass

 Risk: Halving the number of buckets doubles 
the average count

▪ We have to be sure most buckets will still not 
reach count s

 If so, we can get a benefit like multistage, 
but in only 2 passes
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 A-Priori, PCY, etc., take k passes to find 
frequent itemsets of size k

 Can we use fewer passes?

 Use 2 or fewer passes for all sizes, but may 
miss some frequent itemsets

▪ Random sampling

▪ SON (Savasere, Omiecinski, and Navathe)

▪ More in a textbook
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 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory

▪ So we don’t pay for disk I/O each 
time we increase the size of itemsets

▪ Reduce support threshold 
proportionally 
to match the sample size
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 Optionally, verify that the candidate pairs are 
truly frequent in the entire data set by a 
second pass (avoid false positives)

 But you don’t catch sets frequent in the whole 
but not in the sample

▪ Smaller threshold, e.g., s/125, helps catch more 
truly frequent itemsets

▪ But requires more space
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 Repeatedly read small subsets of the baskets 
into main memory and run an in-memory 
algorithm to find all frequent itemsets

▪ Note: we are not sampling, but processing the 
entire file in memory-sized chunks

 An itemset becomes a candidate if it is found 
to be frequent in any one or more subsets of 
the baskets.
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 On a second pass, count all the candidate 
itemsets and determine which are frequent in 
the entire set

 Key “monotonicity” idea: an itemset cannot 
be frequent in the entire set of baskets unless 
it is frequent in at least one subset



 SON lends itself to distributed data mining 

 Baskets distributed among many nodes 

▪ Compute frequent itemsets at each node

▪ Distribute candidates to all nodes

▪ Accumulate the counts of all candidates
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 Either multistage or multihash can use more 
than two hash functions

 In multistage, there is a point of diminishing 
returns, since the bit-vectors eventually 
consume all of main memory

 For multihash, the bit-vectors occupy exactly 
what one PCY bitmap does, but too many 
hash functions makes all counts > s
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Questions?


