
Lecture 10

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

2

 Finals A:
▪ Date: 21. February 2022 (Monday)

▪ Last week of the semester

▪ Time: 14:30 - 16:30 CET (~ 90 minutes for the exam)

▪ Location
▪ INF 230 gHS + SR INF 205

 Finals B:
▪ There will be also finals B at the start of the SoSe 2023

▪ You can choose to participate at either finals A or B
 Conditions

▪ No books, scripts, computer, smartphone etc. („Es sind
keine Hilfsmittel zugelassen“)

▪ Please bring your photo ID (Personalausweis / Pass etc.)

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommender
systems

Association
Rules

Duplicate
document
detection

4

Programming in Spark & MapReduce

 A large set of items

▪ e.g., things sold in a
supermarket

 A large set of baskets

▪ Each basket is a
small subset of items

▪ E.g., the things one
customer buys on one day

 Goal: discover association rules

▪ People who bought {x,y,z} tend to buy {v,w}

▪ Amazon!
5

Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

TID Items in a basket

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Input:

Output:

 Simplest question: Find sets of items that
appear together “frequently” in baskets

 Support for itemset I: Number of baskets
containing all items in I

▪ (Often expressed as a fraction
of the total number of baskets)

 Given a support threshold s,
frequent itemsets are sets of
items that appear in
at least s baskets

6

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of

{Beer, Bread} = 2

 Back to finding frequent itemsets
 Typically, data is kept in flat files

rather than in a database system:
▪ Stored on disk

▪ Stored basket-by-basket

▪ Baskets are small but we have
many baskets and many items
▪ Expand baskets into pairs, triples, etc.

as you read baskets

▪ Use k nested loops to generate all
sets of size k

7

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers,

and boundaries between

baskets are –1.

Note: We want to find frequent itemsets. To find them, we

have to count them. To count them, we have to generate them.

 A two-pass approach called
A-Priori limits the need for
main memory

 Key idea: monotonicity

▪ If a set of items I appears at
least s times, so does every subset J of I

 Contrapositive for pairs:
If item i does not appear in s baskets, then no
pair including i can appear in s baskets

 For pairs: find pairs by counting all candidate
pairs of frequent singletons

8

9

 For each k, we construct two sets of
k-tuples (sets of size k):

▪ Ck = candidate k-tuples = those that might be
frequent sets (support > s) based on information
from the pass for k–1

▪ Lk = the set of truly frequent k-tuples

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of freq. items

(from L1)

Count

the pairs
To be

explained

Count

the items

 Observation:
In pass 1 of A-Priori, most memory is idle

▪ We store only individual item counts

 => Use this idle RAM to reduce RAM used in pass 2!
 Pass 1 of PCY: In addition to item counts, maintain a

hash table 𝒉 with as many buckets as fit in memory
▪ Keep a count for each bucket into which pairs of items are

hashed (for each bucket just keep the count, not the actual pairs!)

▪ Why? If a pair 𝑝 is frequent, “its” bucket 𝒉(𝑝) will receive
count above a threshold 𝑠 for frequent pairs!

 Pass 2 of PCY:
Count only those pairs that hash to frequent buckets

11

FOR (each basket) :

FOR (each item in the basket) :

add 1 to item’s count;

FOR (each pair of items) :

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:

▪ Pairs of items need to be generated from the input
file; they are not present in the file

▪ Hash function should have many buckets, i.e. must be
likely to hash different pairs to different buckets

12

New

in

PCY

13

 Count all pairs {i, j} that meet the
conditions for being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in
the bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the
pair to have a chance of being frequent

14

Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Hash table

for pairs

M
a
in

 m
e
m

o
ry

Counts of

candidate

pairs

 Limit the number of candidates to be counted

▪ Remember: Memory is the bottleneck

▪ Still need to generate all the itemsets but we only
want to count/keep track of the ones that are frequent

 Key idea: After Pass 1 of PCY, rehash only those
pairs that qualify for Pass 2 of PCY

▪ i and j are frequent, and

▪ {i, j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to
buckets, so fewer false positives

 Requires 3 passes over the data

16

17

First

hash table

Item counts

Bitmap 1 Bitmap 1

Bitmap 2

Freq. items Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2 Pass 3

Count items

Hash pairs {i,j}

Hash pairs {i,j}

into Hash2 iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

Count pairs {i,j} iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

{i,j} hashes to

freq. bucket in B2

First

hash table
Second

hash table
Counts of

candidate

pairs

M
a
in

 m
e
m

o
ry

 Count only those pairs {i, j} that satisfy these
candidate pair conditions:

1. Both i and j are frequent items

2. Using the first hash function, the pair hashes to
a bucket whose bit in the first bit-vector is 1

3. Using the second hash function, the pair hashes to
a bucket whose bit in the second bit-vector is 1

18

1. The two hash functions have to be
independent

2. We need to check both hashes on the
third pass

▪ If not, we would end up counting pairs of
frequent items that hashed first to an
infrequent bucket but happened to hash
second to a frequent bucket

19

 Key idea: Use several independent hash
tables on the first pass

 Risk: Halving the number of buckets doubles
the average count

▪ We have to be sure most buckets will still not
reach count s

 If so, we can get a benefit like multistage,
but in only 2 passes

20

21

First hash

table

Second

hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of

candidate

pairs

Pass 1 Pass 2

First

hash table

Second

hash table

Counts of

candidate

pairs

M
a
in

 m
e
m

o
ry

 A-Priori, PCY, etc., take k passes to find
frequent itemsets of size k

 Can we use fewer passes?

 Use 2 or fewer passes for all sizes, but may
miss some frequent itemsets

▪ Random sampling

▪ SON (Savasere, Omiecinski, and Navathe)

▪ More in a textbook

23

 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory

▪ So we don’t pay for disk I/O each
time we increase the size of itemsets

▪ Reduce support threshold
proportionally
to match the sample size

24

Copy of

sample

baskets

Space

for

counts

M
a
in

 m
e
m

o
ry

 Optionally, verify that the candidate pairs are
truly frequent in the entire data set by a
second pass (avoid false positives)

 But you don’t catch sets frequent in the whole
but not in the sample

▪ Smaller threshold, e.g., s/125, helps catch more
truly frequent itemsets

▪ But requires more space

25

26

 Repeatedly read small subsets of the baskets
into main memory and run an in-memory
algorithm to find all frequent itemsets

▪ Note: we are not sampling, but processing the
entire file in memory-sized chunks

 An itemset becomes a candidate if it is found
to be frequent in any one or more subsets of
the baskets.

27

 On a second pass, count all the candidate
itemsets and determine which are frequent in
the entire set

 Key “monotonicity” idea: an itemset cannot
be frequent in the entire set of baskets unless
it is frequent in at least one subset

 SON lends itself to distributed data mining

 Baskets distributed among many nodes

▪ Compute frequent itemsets at each node

▪ Distribute candidates to all nodes

▪ Accumulate the counts of all candidates

28

 Either multistage or multihash can use more
than two hash functions

 In multistage, there is a point of diminishing
returns, since the bit-vectors eventually
consume all of main memory

 For multihash, the bit-vectors occupy exactly
what one PCY bitmap does, but too many
hash functions makes all counts > s

29

Questions?

