Mining Massive Datasets

Lecture 11

Artur Andrzejak

http://pvs.ifi.uni-heidelberg.de

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: http://www.mmds.org.

Today: Web Advertising

High dim.

Locality sensitive hashing

Clustering

Dimensionality reduction Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

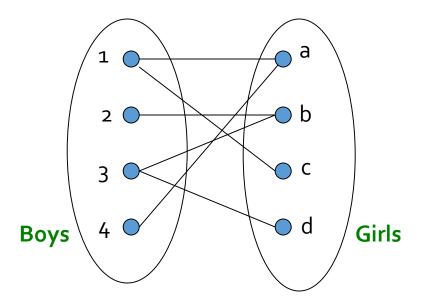
Association Rules

Duplicate document detection

Programming in Apache Spark

Online Algorithms

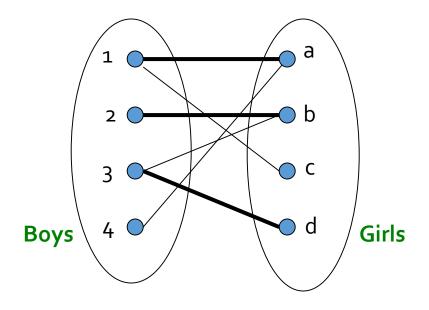
Classic model of algorithms


- You get to see the entire input, then compute some function of it
- In this context, "offline algorithm"

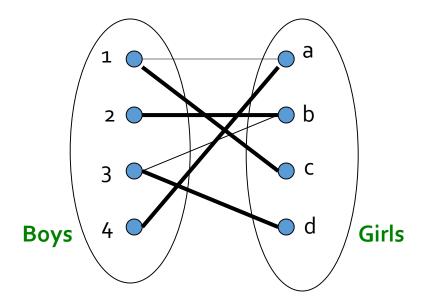
Online Algorithms

- You get to see the input one piece at a time, and need to make irrevocable decisions along the way
- Similar to the data stream model

Online Bipartite Matching


Example: Bipartite Matching

Nodes: Boys and Girls; Edges: Preferences


Goal: Match boys to girls so that maximum number of preferences is satisfied

Example: Bipartite Matching

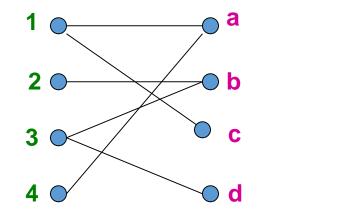
M = {(1,a),(2,b),(3,d)} is a matching Cardinality of matching = |M| = 3

Example: Bipartite Matching

M = {(1,c),(2,b),(3,d),(4,a)} is a perfect matching

Perfect matching ... all vertices of the graph are matched **Maximum matching** ... a matching that contains the largest possible number of matches

Matching Algorithm


- Problem: Find a maximum matching for a given bipartite graph
 - A perfect one if it exists
- There is a polynomial-time offline algorithm based on augmenting paths (Hopcroft & Karp 1973, see http://en.wikipedia.org/wiki/Hopcroft-Karp algorithm)
- But what if we do not know the entire graph upfront?

Online Graph Matching Problem

- Initially, we are given the set boys
- In each round, one girl's choices are revealed
 - That is, girl's edges are revealed
- At that time, we have to decide to either:
 - Pair the girl with a boy
 - Do not pair the girl with any boy
- Example of application:

Assigning tasks to servers

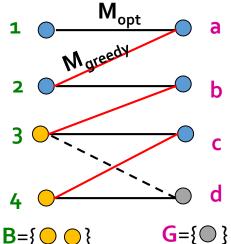
Online Graph Matching: Example

- (1,a)
- (2,b)
- (3,d)

Greedy Algorithm

- Greedy algorithm for the online graph matching problem:
 - Pair the new girl with any eligible boy
 - If there is none, do not pair girl
- How good is the algorithm?

Competitive Ratio

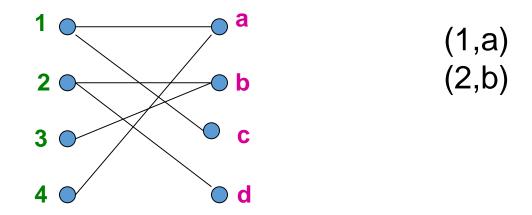

• For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}

(what is greedy's worst performance over all possible inputs I)

Analyzing the Greedy Algorithm

- Consider a case: M_{greedy} ≠ M_{opt}
- Consider the set G of girls matched in M_{opt} but not in M_{greedy}
- Every boy in set B of b's <u>adjacent</u> to B = S girls in G is already matched in M_{greedy} :
 - If there would exist such non-matched (by M_{greedy}) boy adjacent to a non-matched girl then greedy would have matched them
- Since boys B are already matched in M_{greedy} then

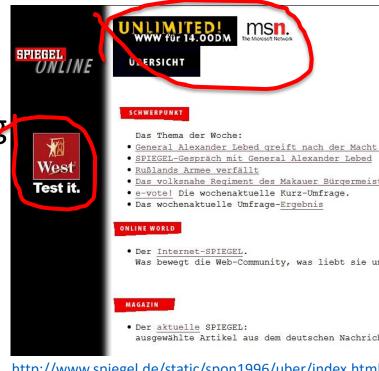
 (1) $|M_{areedy}| \ge |B|$



Analyzing the Greedy Algorithm

Summary so far:

- Girls G matched in M_{opt} but not in M_{greedy}
- $\blacksquare (1) |M_{qreedy}| \ge |B|$
- There are at least |G| such boys $(|G| \le |B|)$ otherwise the optimal algorithm couldn't have matched all girls in G
 - So: $|G| \le |B| \le |M_{greedy}|$
- By definition of G also: $|\mathbf{M}_{opt}| \le |\mathbf{M}_{greedy}| + |\mathbf{G}|$
 - Worst case is when $|G| = |B| = |M_{greedy}|$
- $|M_{opt}| \le 2|M_{greedy}|$ then $|M_{greedy}|/|M_{opt}| \ge 1/2$

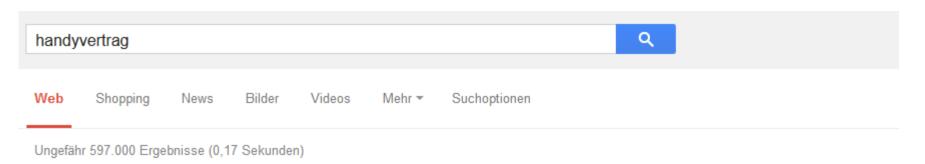

Worst-case Scenario

Web Advertising

History of Web Advertising

- Banner ads (1995-2001)
 - Initial form of web advertising
 - Popular websites charged *X*\$ for every 1,000 "impressions" of the ad
 - Called "CPM" rate (Cost per thousand impressions)
 - Modeled similar to TV, magazine ads
 - From untargeted to demographically targeted
 - Low click-through rates
 - Low return of investment for advertisers

http://www.spiegel.de/static/spon1996/uber/index.html


CPM...cost per *mille*

Mille ...thousand in Latin

Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers bid on search keywords
 - When someone searches for that keyword, the highest bidder's ad is shown
 - Advertiser is charged only if the ad is clicked on
- Similar model adopted by Google with some changes around 2002
 - Called Adwords

Ads vs. Search Results

CHECK24: Handyvertrag - CHECK24.de

Anzeige www.check24.de/Handyvertrag *

4,7 ★★★★ Bewertung für check24.de

Jetzt günstigen **Handyvertrag** finden Exklusiv bis 150€ Cashback on Top TÜV "sehr gut" · 100% Kostenlos · Exklusive Angebote · Top-Handys uvm. Service- und Beratungsleistungen exzellent – ServiceRating.de

CHECK24: mit Smartphone CHECK24: Galaxy S5 ab 0 €
CHECK24: Allnet ab 11,36€ CHECK24: Mobilfunktarife

Handyvertrag BASE all-in - BASE.de

Anzeige www.base.de/ ▼

4,4 ★★★★ Bewertung für base.de

Allnet Flat nur noch 25€ im Monat. Aktions-Vorteil exklusiv online! Exklusive Online Vorteile · Versand & Retoure gratis · Voller Käuferschutz Bestes Preis-Leistungsverhältnis 2014 – Teltarif

Galaxy S5 Aktion - i Phone5s Angebot - Surf Aktion bis 01.02.

Handyvertrag inkl. Handy - Günstig wie nie - jetzt bestellen Anzeige www.preis24.de/Handyvertrag *

Ohne Versand- und Anschlusskosten.

Deals aus der TV Werbung · Mit Rufnummern-Mitnahme · Keine Versandkosten. iPhone 6 plus + Vertrag - iPhone 6 mit Vertrag - Alles Flat für 19,95 €

(i) Anzeigen (i)

Handyvertrag nur 4,95€

www.deutschlandsim.de/ ▼
4,6 ★★★★ Bewertung für Anbieter
100 Min + 100 SMS + 300 MB Internet
Hole Dir das Top-Angebot!

o2 Allnet-Flat Vertrag www.o2online.de/Handyvertrag *

Die o2 Allnet-Verträge: Jetzt mit Highspeed LTE schon ab 19,99€ mtl.!

Handyvertrag LTE ONE 7,95

smartmobil.de/Handy-Vertrag-LTE-ONE ▼ 4,7 ★★★★ Bewertung für Anbieter
Handy Full-Flat + 4G LTE-Highspeed.
All-Net-Flat: alle Netze + Internet

iPhone 5s günstig

www.blue-deals.de/iPhone_5s ▼
Das iPhone 5s mit Allnet-Flat und
1 GB Internet für 34,99 € mtl.

Web 2.0

- Performance-based advertising works!
 - Multi-billion-dollar industry
- Interesting problem:
 What ads to show for a given query?
 - (Today's lecture)
- If I am an advertiser, which search terms should I bid on and how much should I bid?
 - (Not focus of today's lecture)

Adwords Problem

- A stream of queries arrives at the search engine: q_1 , q_2 , ...
- Several advertisers bid on each query
- When query q_i arrives, search engine must pick a subset of advertisers whose ads are shown
- Goal: Maximize search engine's revenues
 - Simple solution: Instead of raw bids, use the "expected revenue per click" (i.e., Bid*CTR)
- Clearly we need an online algorithm!

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
A	\$1.00	1%	1 cent
В	\$0.75	2%	1.5 cents
C	\$0.50	2.5%	1.125 cents
		Click through rate	Expected revenue

The Adwords Innovation

Advertiser	Bid	CTR	Bid * CTR
В	\$0.75	2%	1.5 cents
С	\$0.50	2.5%	1.125 cents
Α	\$1.00	1%	1 cent

Adwords Problem

Given:

- 1. A set of bids by advertisers for search queries
- 2. A click-through rate for each advertiser-query pair
- 3. A budget for each advertiser (say for 1 month)
- 4. A limit on the number of ads to be displayed with each search query
- Respond to each search query with a set of advertisers such that:
 - 1. The size of the set is no larger than the limit on the number of ads per query
 - 2. Each advertiser has bid on the search query
 - 3. Each advertiser has enough budget left to pay for the ad if it is clicked upon

Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown
- Each advertiser has a limited budget
 - Search engine guarantees that the advertiser
 will not be charged more than their daily budget

Complications: CTR

- CTR: Each ad has a different likelihood of being clicked
 - Advertiser 1 bids \$2, click probability = 0.1
 - Advertiser 2 bids \$1, click probability = 0.5
 - Clickthrough rate (CTR) is measured historically
 - Very hard problem: Exploration vs. exploitation
 Exploit: Should we keep showing an ad for which we have good estimates of click-through rate
 or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate

Greedy Algorithm

Our setting: Simplified environment

- There is 1 ad shown for each query
- All advertisers have the same budget B
- All ads are equally likely to be clicked
- Value of each ad is the same (=1)

Simplest algorithm is greedy:

- For a query pick any advertiser who has bid 1 for that query
- Competitive ratio of greedy is 1/2

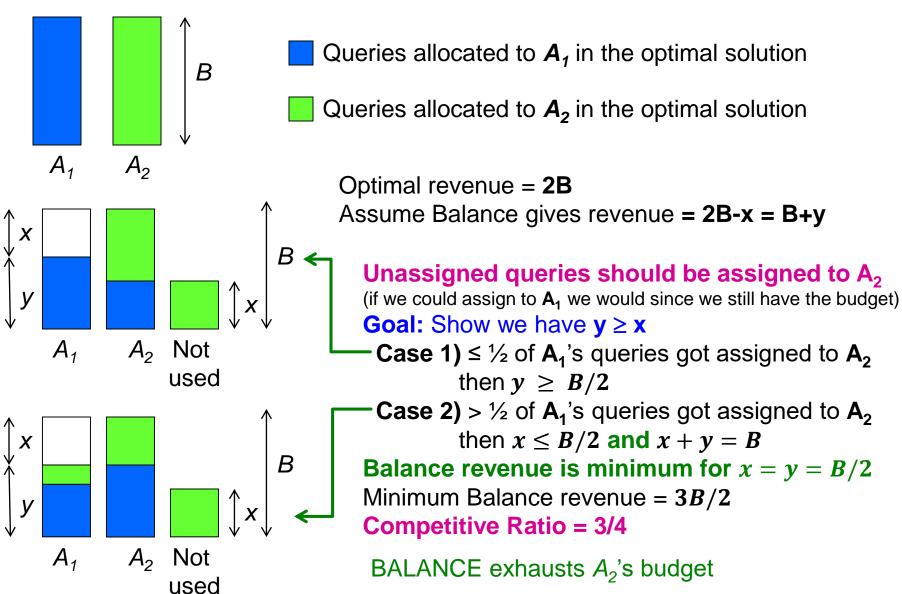
Bad Scenario for Greedy

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
 - Worst case greedy choice: B B B B _ _ _ _
 - Optimal: AAAABBBBB
 - Competitive ratio = ½
- This is the worst case!
 - Note: Greedy algorithm is deterministic it always resolves draws in the same way

Web Advertising – the BALANCE Algorithm

BALANCE Algorithm [MSVV]

- "Simple" BALANCE Algorithm by Mehta,
 Saberi, Vazirani, and Vazirani
- Algorithm:
 - For each query, assign it to an advertiser with the largest <u>unspent</u> budget (i.e. largest <u>BALANCE</u>).
 - Break ties arbitrarily (but in a deterministic way)


Example: BALANCE

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of \$4
- Query stream: x x x x y y y y
- BALANCE choice: A B A B B B _ _
 - Optimal: A A A A B B B B
- In general: For BALANCE on 2 advertisers
 Competitive ratio = ¾

Analyzing BALANCE (2 advertisers)

- Consider simple case (w.l.o.g.):
 - **2** advertisers, A_1 and A_2 , each with budget $B (\geq 2)$
 - Optimal solution exhausts both advertisers' budgets
- BALANCE must exhaust at least one advertiser's budget:
 - If not, we can allocate more queries
 - Whenever BALANCE makes a mistake (both advertisers bid on the query), advertiser's unspent budget only decreases
 - Since optimal exhausts both budgets, one will for sure get exhausted
 - Assume BALANCE exhausts A₂'s budget, but allocates x queries fewer than the optimal
 - Revenue: BAL = 2B x

Analyzing Balance (2 advertisers)

BALANCE: General Result

- In the general case, worst competitive ratio
 of BALANCE is 1–1/e = approx. 0.63
 - General case means: arbitrary many advertisers,
 but still all have same budget, and bids are 0 or 1
- Interestingly, no online algorithm has a better competitive ratio for this case
- The worst case example that gives this ratio is shown in the additional slides

General Version of the Problem

- Generalization: Arbitrary bids (not only 0 or 1) and arbitrary budgets per bidder
- In this setting: "Simple" BALANCE can be terrible
- Example:
 - Same query q (repeated), and advertisers A_i, each with bid = x_i, budget = b_i
 - Consider two advertisers A₁ and A₂
 - A_1 : bid = X_1 = 1, b_1 = 110
 - A_2 : bid = x_2 = 10, b_2 = 100
 - Consider we see 10 instances of q
 - BALANCE always selects A_1 and earns 10 (budget of A_2 is larger!)
 - But optimal solution would always choose A₂ and earn 100

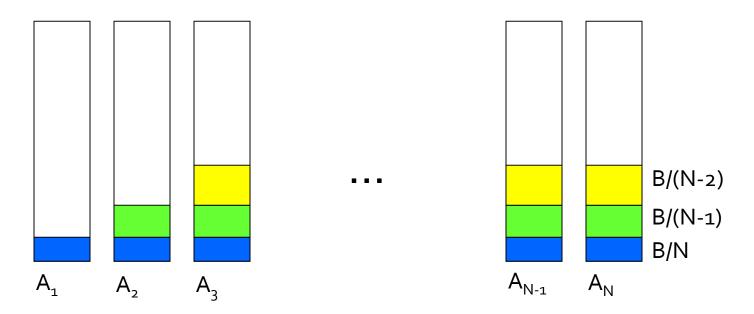
Generalized BALANCE (Sec. 8.4.7)

- We allow now arbitrary bids and budgets
- Arbitrary bids: consider query q, bidder i
 - Bid = x_i
 - Budget = b_i
 - Amount spent so far = m_i
 - Fraction of budget left over f_i = 1-m_i/b_i
 - Define $\psi_i(q) = x_i(1-e^{-f_i})$
- Generalized Algorithm: Allocate query q to bidder i with largest value of $\psi_i(q)$
- = => We get same competitive ratio (1-1/e)

Thank you.

Questions?

Additional Slides


Worst case for (simple) BALANCE

- N advertisers: A₁, A₂, ... A_N
 - Each with budget B > N
- Queries:
 - N·B queries appear in N rounds of B queries each
- Bidding:
 - Round 1 queries: bidders A₁, A₂, ..., A_N
 - Round 2 queries: bidders $A_2, A_3, ..., A_N$
 - Round i queries: bidders A_i , ..., A_N
- Optimum allocation:

Allocate round i queries to A_i

Optimum revenue N·B

BALANCE Allocation

BALANCE assigns each of the queries in round 1 to $\bf N$ advertisers. After $\bf k$ rounds, sum of allocations to each of advertisers $\bf A_k,...,\bf A_N$ is

$$S_k = S_{k+1} = \dots = S_N = \sum_{i=1}^k \frac{B}{N-i+1}$$

If we find the smallest k such that $S_k \ge B$, then after k rounds we cannot allocate any queries to any advertiser

BALANCE: Analysis

B/1 B/2 B/3 ... B/(N-(k-1)) ... B/(N-1) B/N

$$S_{k} = B$$

1/1 1/2 1/3 ... 1/(N-(k-1)) ... 1/(N-1) 1/N

 $S_{k} = C$
 $S_{k} = C$

BALANCE: Analysis

- Fact: $H_n = \sum_{i=1}^n 1/i \approx \ln(n)$ for large n
 - Result due to Euler

$$1/1$$
 $1/2$ $1/3$... $1/(N-(k-1))$... $1/(N-1)$ $1/N$
 $In(N)$
 $S_k = 1$

- $S_k = 1 \text{ implies: } H_{N-k} = ln(N) 1 = ln(\frac{N}{e})$
- We also know: $H_{N-k} = ln(N-k)$
- So: $N k = \frac{N}{e}$
- Then: $k = N(1 \frac{1}{e})$

N terms sum to ln(N). Last k terms sum to 1. First N-k terms sum to ln(N-k) but also to ln(N)-1

BALANCE: Analysis

- So after the first k=N(1-1/e) rounds, we cannot allocate a query to any advertiser
- Revenue = B·N (1-1/e)
- Competitive ratio = 1-1/e