
Lecture 12

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

3

Programming in Spark & MapReduce

 In many data mining situations, we do not
know the entire data set in advance

 Stream Management is important when the
input rate is controlled externally:

▪ Google queries

▪ Twitter or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)

5

6

 Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)

▪ We call elements of the stream tuples

 The system cannot store the entire stream
accessibly

 Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

7

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0

time

Streams Entering.

Each is stream is

composed of

elements/tuples

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

 Types of queries one wants on answer on
a data stream: (simpler)

▪ Sampling data from a stream

▪ Construct a random sample

▪ Queries over sliding windows

▪ Number of items of type x in the last k elements
of the stream

▪ Or average, maximum, minimum, …

8

 Types of queries one wants on answer on
a data stream: (complex)

▪ Filtering a data stream

▪ Select elements with property x from the stream

▪ Counting distinct elements

▪ Number of distinct elements in the last k
elements of the stream

▪ Estimating moments

▪ Estimate avg./std. dev. of last k elements

▪ Finding frequent elements
9

 Mining query streams

▪ Google wants to know what queries are
more frequent today than yesterday

 Mining click streams

▪ Yahoo wants to know which of its pages are
getting an unusual number of hits in the past hour

 Mining social network news feeds

▪ E.g., look for trending topics on Twitter, Facebook

10

 Sensor Networks

▪ Many sensors feeding into a central controller

 Telephone call records

▪ Data feeds into customer bills as well as
settlements between telephone companies

 IP packets monitored at a switch

▪ Gather information for optimal routing

▪ Detect denial-of-service attacks

11

 Today

▪ Stream filtering

▪ Sampling a fixed proportion of a stream

▪ Sample size grows as the stream grows

▪ Sampling a fixed-size sample

▪ Reservoir sampling

▪ Maybe: Spark Streaming

12

 Each element of data stream is a tuple
 Given a list of keys S, determine which tuples

of the stream are in S

 Obvious solution: Hash table

▪ But suppose we do not have enough memory to
store all of S in a hash table

▪ E.g., we might be processing millions of filters
on the same stream

14

 Example: Email spam filtering

▪ We know 1 billion “good” email addresses

▪ If an email comes from one of these, it is NOT
spam

 Publish-subscribe systems

▪ You are collecting lots of messages (news articles)

▪ People express interest in certain sets of keywords

▪ Determine whether each message matches user’s
interest

15

 Given a set of keys S that we want to filter …
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n)
 Hash each member of s S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and

output only those that hash to bit that was
set to 1

▪ Output a if B[h(a)] == 1

16

 Creates false positives but no false negatives
▪ If the item is in S we surely output it,

▪ If not in S: we may still output it (erroneously)
17

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least

one of the items in S hashed to.

Hash
func h

Drop the item.

It hashes to a bucket set

to 0 so it is surely not in S.

Bit array B

 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely
hashes to a bucket that has the big set to 1,
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so
about 1/8th of the addresses not in S get
through to the output (false positives)
▪ Actually, less than 1/8th, because more than one

address might hash to the same bit

18

 More accurate analysis for the number of
false positives

 Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

▪ Every dart hits (but don’t know which target)

 In our case:

▪ Targets = bits/buckets

▪ Darts = hash values of items
19

We want to obtain prob. that a “random”
bit of array B is set to 1 (by one of the

addresses in S) = fraction of 1s in B

 We have m darts, n targets (each dart hits)
 What is the probability that a specific target X

gets at least one dart?

20

(1 – 1/n)

Probability that a
specific target X is not

hit by a (single) dart

m

1 -

Probability at
least one dart

hits a specific target X

n(/ n)

Equivalent
Equals e-1

as n →∞

1 – e–m/n

 Fraction of 1s in the array B =
= probability of false positive = 1 – e-m/n

 Example: m=109 darts, n=8∙109 targets

▪ Fraction of 1s in B = 1 – e-1/8 = 0.1175

▪ Compare with our earlier estimate: 1/8 = 0.125

21

 Consider: |S| = m, bitset B, |B| = n
 Use k independent hash functions h1 ,…, hk

 Initialization:

▪ Set B to 0s

▪ Hash each element s S using each hash function hi,
set B[hi(s)] = 1 (for each i = 1,.., k)

 Run-time:

▪ When a stream element with key x arrives

▪ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
▪ That is, x hashes to a bucket set to 1 for every hash function hi(x)

▪ Otherwise discard the element x
22

(note: we have a

single bitset B!)

 Input: a binary string x, e.g. integer
 Possible h1:

▪ Take all odd-numbered positions of x

▪ I.e. positions 1, 3, 5, …

▪ Treat them as a number, then compute modulo 11

▪ … 11 or some other prime number

 Possible h2:

▪ Take all even-numbered positions of x

▪ i.e. positions 0, 2, 4, …

▪ Treat them as a number, then compute modulo 11

23

 What fraction of the bit vector B are 1s?

▪ Throwing k∙m darts at n targets

▪ So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k

24

 m = 1 billion, n = 8 billion

▪ k = 1: (1 – e-1/8) = 0.1175

▪ k = 2: (1 – e-1/4)2 = 0.0493

 What happens as we
keep increasing k?

 “Optimal” value of k: n/m ln(2)

▪ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

▪ Error at k = 6: (1 – e-1/6)2 = 0.0235

25

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

(1 – e-km/n)k

 Bloom filters guarantee no false negatives,
and use limited memory

▪ Great for pre-processing before more
expensive checks

 Suitable for hardware implementation

▪ Hash function computations can be parallelized

 Is it better to have 1 big B or k small Bs?

▪ It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

▪ But keeping 1 big B is simpler

26

Sampling a fixed proportion

 Since we can not store the entire stream,
one obvious approach is to store a sample

 Two different problems:

▪ (1) Sample a fixed proportion of elements
in the stream (say 1 in 10) (=> storage grows!)

▪ (2) Maintain a random sample of fixed size
over a potentially infinite stream

▪ At any “time” k we would like a random sample
of s elements

▪ What is the property of the sample we want to maintain?
For all time steps k, each of k elements seen so far has
equal prob. of being sampled

28

 Problem 1: Sampling fixed proportion
 Scenario: Search engine query stream

▪ Stream of tuples: (user, query, time)

▪ Answer questions such as: How often did a user
run the same query in a single day?

▪ Have space to store 1/10th of query stream

 Naïve solution:

▪ Generate a random integer in [0..9] for each query

▪ Store the query if the integer is 0, otherwise
discard

29

 Simple question: What fraction of queries by an
average search engine user are duplicates?
▪ Suppose each user issues x queries once and d queries twice

=> user issues x+2d “atomic” queries
▪ => Correct answer: d/(x+d)

 Proposed solution: We keep 10% of the queries
▪ Sample will contain x/10 of the singleton queries and

2d/10 of the duplicate queries at least once
▪ But sample contains only d/100 pairs of duplicates

▪ d/100 = 1/10 ∙ 1/10 ∙ d

▪ Of d duplicates, 18d/100 appear exactly once in the sample
▪ 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

▪ So the sample-based answer is:
𝑑

100
𝑥

10
+

𝑑

100
+
18𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅

30

d/100 appear twice: 1st query gets sampled with prob. 1/10,
2nd also with 1/10, there are d such “query pairs” => d/100

Very different
from d/(x+d)!Prob. 1/10 for first to get selected and 9/10 for the second to

not get selected; and the other way around, so in total 18d/100

 Our mistake: we sampled based on the position
in the stream, rather than the value of the
stream element

 Solution: Pick 1/10th of users and take all their
searches in the sample

▪ Use a hash function that hashes the user name or
user id uniformly into 10 buckets

 All or none of the query instances of a user are
selected

▪ Therefore the fraction of his duplicate queries in the
sample is the same as for the stream as a whole

31

 Stream of tuples with keys:

▪ Key is some subset of each tuple’s components

▪ e.g., tuple is (user, search, time); key is user

▪ Choice of key depends on application

 To get a sample of a/b fraction of the stream:

▪ Hash each tuple’s key uniformly into b buckets

▪ Pick the tuple if its hash value is ≤ a

32

Hash table with b buckets, pick the tuple if its hash value is ≤ a.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

Sampling a fixed-size sample

 Problem 2: Fixed-size sample
 Suppose we need to maintain a random

sample S of size exactly s tuples

▪ Why? Don’t know length of stream in advance

 Suppose at time n we have seen n items

▪ Each item is in the sample S with equal prob. s/n

34

How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

 Algorithm (a.k.a. Reservoir Sampling)

▪ Store all the first s elements of the stream to S

▪ Suppose we have seen n-1 elements, and now
the nth element arrives (n > s)

▪ With probability s/n, keep the nth element, else discard it

▪ If we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:

▪ After n elements, the sample contains each
element seen so far with probability s/n

35

 We prove this by induction:
▪ Assume that after n elements, the sample contains

each element seen so far with probability s/n

▪ We need to show that after seeing element n+1
the sample maintains the property
▪ Sample contains each element seen so far with

probability s/(n+1)

 Base case:
▪ After we see n=s elements the sample S has the

desired property
▪ Each out of n=s elements is in the sample with

probability s/s = 1

36

 Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

 Now element n+1 arrives
 Inductive step: For elements already in S,

probability that the algorithm keeps it in S is:

 So, at time n, a tuple in S was there with prob. s/n
 Time n→n+1, tuple stayed in S with prob. n/(n+1)

 So prob. tuple is in S at time n+1 =
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏
37

1

1

11
1

+
=







 −









+
+








+
−

n

n

s

s

n

s

n

s

Element n+1 discarded Element n+1

not discarded

Element in the

sample not picked

Overview

 Spark library / module: extends Spark for (large-
scale) distributed data stream processing

 Started in 2012, included in 2014 in Spark 0.9
 Bindings in Spark version 1.2+

▪ Scala, Java, Python (partial)

39

Spark SQL
Spark

Streaming
GraphX MLlib

Spark

 Many apps require processing the same data in
live streaming as well as in batches

▪ E.g. finance: trading robots / high freq. trading

▪ Batch: testing and evaluating trading systems (backtests)

▪ Stream: live trading using prepared systems

▪ Detecting DoS attacks

▪ Batch: understand patterns of DoS, tune algorithms

▪ Stream: apply prepared algorithms to live data

 => Need for two separate programming models

▪ Doubled effort, inconsistency, hard to debug
40

 Traditional processing model:

▪ Pipeline of nodes

▪ Each node maintain a mutable state

▪ Each input record updates the state and new
records are sent out

 => Mutable state is lost
if node fails

 => Making stateful
stream processing fault-
tolerant is challenging

41

input

input

From: Tathagata Das, Spark Streaming, Spark Summit 2014

 Process stream as a series of
small batch jobs

▪ Chop up the live stream
into batches of X seconds

▪ Spark treats each batch
of data as an RDD and
processes them using
(normal) RDD operations

▪ The results of the RDD
operations are returned
in batches

42

Spark
Streaming

Spark

data stream

batches of X
seconds

(X ≥ 0.5 s)

result
batches

 Input data streams can come from many sources, e.g.

▪ HDFS/S3 (files), TCP sockets, Kafka, Flume, Twitter, …

 Output data can be pushed out to …

▪ File systems, databases, live dashboards

43

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Basic Programming

 DStream = Discretized Stream

▪ “Container” for a stream

▪ Implemented as a sequence
of RDDs

 DStreams can be …

▪ Created from “raw”
input streams

▪ Obtained by
transforming
existing DStreams

45

Each chunk =
Resilient Distributed

Dataset (RDD)

Dstream A

Dstream A’

…

From: Tathagata Das, Spark Streaming, Spark Summit 2014

 Goal: We want to count the occurrences of
each word in each batch a text stream

▪ Data received from a TCP socket 9999, each
“event” (= record) is a line of text

▪ Stream is split into RDDs, each 1 second “length”

▪ Each RDD can have 0 or more records!

▪ Output: first ten elements of each RDD

 Program structure

▪ 1. Set up the processing “pipeline”

▪ 2. Start the computation and specify termination

46

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

lines = ssc.socketTextStream("localhost", 9999)

47

Use two threads: 1 for source feed, 1 for processing

Set batch interval to 1 second

Create a DStream that will connect to
hostname:port, like localhost:9999

 Since each “event” in a DStream is a “normal” RDD-
record, we can process it with Spark operations
▪ Here: each record is a line of text

words = lines.flatMap(lambda line: line.split(" "))
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

wordCounts.pprint()

48

Split each line into words

Count each word in each batch

New DStream (and new
RDD for each batch)

Print the first ten elements of each RDD
generated in this DStream to the console

ssc.start()
ssc.awaitTermination()

 Netcat (link) utility can
redirect std input to a
TCP port (here: 9999)

 nc -lk 9999

 <type anything…>
 Hello IMMD

49

Start the computation

Wait to terminate

 ./bin/spark-submit
network_wordcount.py
localhost 9999

 ------------------------------------
 Time: 2015-01-08 13:22:51
 ------------------------------------
 (hello,1)
 (IMMD,1)
 ...

Terminal 1 Terminal 2

http://nc110.sourceforge.net/

Questions?

