
Lecture 13

Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de

1

http://pvs.ifi.uni-heidelberg.de/

A substantial part of these slides come (either
verbatim or in a modified form) from the book
Mining of Massive Datasets
by Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University).
For more information, see the website
accompanying the book: http://www.mmds.org.

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensio-
nality

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Web
advertising

Queries on
streams

Machine
learning

SVM

Decision
Trees

Perceptron,
kNN

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

3

Programming in Spark & MapReduce

 Problem:

▪ Data stream consists of a universe of elements
chosen from a set of size N

▪ Maintain a count of the number of distinct
elements seen so far

 Obvious approach:
Maintain the set of elements seen so far

▪ That is, keep a hash table of all the distinct
elements seen so far

5

 How many different words are found among
the Web pages being crawled at a site?

▪ Unusually low or high numbers could indicate
artificial pages (spam?)

 How many different Web pages does each
customer request in a week?

 How many distinct products have we sold in
the last week?

6

 Real problem: What if we do not have space
to maintain the set of elements seen so far?

 Estimate the count in an unbiased way

 Accept that the count may have a little error,
but limit the probability that the error is large

7

 Pick a hash function h that maps each of the
N elements to at least log2 N bits

 For each stream element a, let r(a) be the
number of trailing 0s in h(a)

▪ r(a) = position of first 1 counting from the right

▪ E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

 Record R = the maximum r(a) seen

▪ R = maxa r(a), over all the items a seen so far

 Estimated number of distinct elements = 2R

8

9

 Very very rough and heuristic intuition why
Flajolet-Martin works:
▪ h(a) hashes a with equal prob. to any of N values

▪ Then h(a) is a sequence of log2 N bits,
where 2-r fraction of all as have a tail of r zeros
▪ About 50% of as hash to ***0

▪ About 25% of as hash to **00

▪ So, if we saw the longest tail of r=2 (i.e., item hash
ending *100) then we have probably seen
about 4 distinct items so far

▪ So, it takes to hash about 2r items before we
see one with zero-suffix of length r

10

 Now we show why Flajolet-Martin works

 Formally, we will show that probability of
finding a tail of r zeros:

▪ Goes to 1 if 𝒎 ≫ 𝟐𝒓

▪ Goes to 0 if 𝒎 ≪ 𝟐𝒓

where 𝒎 is the number of distinct elements
seen so far in the stream

 Thus, 2R will almost always be around m!
 Note: Compare to proof-of-work in Bitcoin ☺

11

 What is the probability that a given h(a) ends
in at least r zeros is 2-r

▪ h(a) hashes elements uniformly at random

▪ Probability that a random number ends in
at least r zeros is 2-r

 Then, the probability of NOT seeing a tail
of length r among m elements:

𝟏 − 𝟐−𝒓 𝒎

12

Prob. that given h(a) ends

in fewer than r zeros
Prob. all end in

fewer than r zeros.

 Note:
 Prob. of NOT finding a tail of length r is:

▪ If m << 2r, then prob. tends to 1

▪ as m/2r→ 0

▪ So, the probability of finding a tail of length r tends to 0

▪ If m >> 2r, then prob. tends to 0

▪ as m/2r →

▪ So, the probability of finding a tail of length r tends to 1

 Thus, 2R will almost always be around m!

13

rrr mmrmr e −− −−− −=− 2)2(2)21()21(

1)21(2 =−
−−− rmmr e

0)21(2 =−
−−− rmmr e

rrr mmrmr e
−− −−− −=− 2)2(2)21()21(

 E[2R] is actually infinite; Why?
 Recall that 𝐸 𝑋 = σ𝑋=𝑥 𝑃 𝑋 = 𝑥 ⋅ 𝑥
 Here 𝑥 = 21, … , 2𝑅 , …
 Probabilities 𝑃 𝑋 = 𝑥 are:

▪ Let 𝒓 be such that 𝟐𝒓 ≫ 𝒎 (𝒎 is #elements seen so far)

▪ Let 𝒑 > 𝟎 be probability that 𝑟 was the largest number of 0’s at the end of
the hash value for any of the 𝒎 elements

▪ Then the probability of finding 𝒓 + 𝟏 to be the largest number of 0’s
instead is at least 𝒑/𝟐

 So: Probability 𝑃 𝑋 = 2𝑅+1 halves when R → R+1, but
value 2𝑅+1 doubles

 => The summands in 𝐸 𝑋 remain ~constant
 => We get an infinite sum as limes

14

 E[2R] is actually infinite
 Workaround involves using many hash functions

hi and getting many samples of Ri

 How are samples Ri combined?

▪ Average? What if we get one very large value 𝟐𝑹𝒊?

▪ Median? All estimates are a power of 2

▪ Solution:

▪ Partition your samples into small groups

▪ Take the median of groups

▪ Then take the average of the medians

15

 Ai

k

im)(

 Suppose a stream has elements chosen
from a set 𝐴 of 𝑁 values

 Let 𝒎𝒊 be the number of times value 𝒊 occurs
in the stream

 Example stream: a, b, c, c, a, a, b, …
 => 𝑚𝑎 = 3, 𝑚𝑏 = 2, 𝑚𝑐 = 2
 The kth moment is defined as:

𝑖∈𝐴

(𝑚𝑖)
𝑘

17

 0thmoment = number of distinct elements

▪ The problem just considered

 1st moment = count of the numbers of
elements = length of the stream

▪ Easy to compute

 2nd moment = surprise number S =
a measure of how uneven the distribution is

18

𝑖∈𝐴

(𝑚𝑖)
𝑘

 Stream of length 100 with 11 distinct values
 Item counts (𝒎𝒊‘s): 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
 Item counts (𝒎𝒊‘s): 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1
 Surprise S = 8110

 Q: Why is σ𝑖∈𝐴(𝑚𝑖)
2 a good estimate of an

uneven distribution?
 A: Because σ𝑖∈𝐴(𝑚𝑖)

2 is minimized if all 𝒎𝒊‘s
are (roughly) equal

19

 AMS method works for all moments

▪ Useful if don’t have enough RAM to keep all 𝒎𝒊‘s

 We just consider the 2nd moment 𝑺 = σ𝒊𝒎𝒊
𝟐

 We pick and keep track of “approx” variables X
 For each variable X we store X.el and X.val

▪ X.el corresponds to the (value or ID of) item i

▪ X.val corresponds to the count of item i

 Each X.el and X.val needs RAM => #X is bounded

▪ But: The larger #X, the higher the accuracy of AMS

20

[Alon, Matias, and Szegedy]

 How to set X.val and X.el?

▪ Assume stream has length n (we relax this later)

▪ Pick some random time t (t < n) to start,
so that any time is equally likely

▪ Let at time t the stream have item i: We set X.el = i

▪ Then we maintain count c (X.val = c) of the number
of is in the stream starting from the chosen time t

 Then the estimate of the 2nd moment (σ𝒊𝒎𝒊
𝟐) is:

𝑺 = 𝒇(𝑿) = 𝒏 (𝟐 · 𝒄 – 𝟏)

▪ Note: We use multiple Xs, (X1, X2,… Xk) and our final

estimate will be the average 𝑆 = 1/𝑘 σ𝑗
𝑘 𝑓(𝑋𝑗)

21

 Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

▪ 𝑛 = 15, 𝑚𝑎 = 5, 𝑚𝑏 = 4, 𝑚𝑐 = 3, 𝑚𝑑 = 3

▪ 2nd moment σ𝑖∈𝐴(𝑚𝑖)
2 = 52 + 42 + 2 ⋅ 32 = 59

 Assume we use 3 vars 𝑋1, 𝑋2, 𝑋3
▪ To define them, we pick random positions 3, 8, 13:

▪ a, b, c, b, d, a, c, d, a, b, d, c, a, a, b
 => 𝑋1. el = c, 𝑋1. val = 3; 𝑋2. val = 2, 𝑋3. val = 2

 The estimate 𝑺 of 2nd moment is then:
▪ 𝑓 𝑋1 = 𝑛 2 · 𝑐 – 1 =15⋅(2⋅3−3)=75; 𝑓 𝑋2 = 𝑓 𝑋3 = 45

▪ Final estimate = average of 𝑋𝑖’s: 𝑺 = 1/𝑘 σ𝑗
𝑘 𝑓(𝑋𝑗) = 55

22

 2nd moment is 𝑺 = σ𝒊𝒎𝒊
𝟐

 ct … number of times item at time t appears
from time t onwards (c1=ma , c2=ma-1, c3=mb)

 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒕=𝟏
𝒏 𝒏(𝟐𝒄𝒕 − 𝟏)

=
𝟏

𝒏
σ𝒊𝒏 (𝟏 + 𝟑 + 𝟓 +⋯+ 𝟐𝒎𝒊 − 𝟏)

23

Time t when
the last i is
seen (ct=1)

Time t when
the penultimate
i is seen (ct=2)

Time t when
the first i is
seen (ct=mi)

(A) Group times
by the stream
el. value i (item)

a a a a

1 32 ma

b b b b

Count (a):

Stream:

mi … total count of

item i in the stream

(we are assuming

stream has length n)

c3=mb

Due to (A), the content of the parentheses
corresponds to a specific item i

 𝐸 𝑓(𝑋) =
1

𝑛
σ𝑖 𝑛 (1 + 3 + 5 +⋯+ 2𝑚𝑖 − 1)

▪ Little side calculation: 1 + 3 + 5 +⋯+ 2𝑚𝑖 − 1 =

σ
𝑖=1
𝑚𝑖 (2𝑖 − 1) = 2

𝑚𝑖 𝑚𝑖+1

2
−𝑚𝑖 = (𝑚𝑖)

2

 Then 𝑬 𝒇(𝑿) =
𝟏

𝒏
σ𝒊 𝒏 𝒎𝒊

𝟐

 So, 𝐄 𝐟(𝐗) = σ𝒊 𝒎𝒊
𝟐 = 𝑺

 We have the second moment (in expectation)!

24

a a a a

1 32 ma

b b b bStream:

Count:

c3=mb

 For estimating kth moment we essentially use the
same algorithm but change the estimate:

▪ For k=2 we used n (2·c – 1)

▪ For k=3 we use: n (3·c2 – 3c + 1) (where c=X.val)

 Why?

▪ For k=2: Remember we had 1 + 3 + 5 +⋯+ 2𝑚𝑖 − 1
and we showed terms 2c-1 (for c=1,…,m) sum to m2

▪ σ𝑐=1
𝑚 2𝑐 − 1 = σ𝑐=1

𝑚 𝑐2 − σ𝑐=1
𝑚 𝑐 − 1 2 =𝑚2

▪ So: 𝟐𝒄 − 𝟏 = 𝒄𝟐 − 𝒄 − 𝟏 𝟐

 For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

 Generally: Estimate of kth mom.: 𝒏(𝒄𝒌 − 𝒄 − 𝟏 𝒌)

25

 In practice:
▪ Compute 𝒇(𝑿) = 𝒏(𝟐 𝒄 – 𝟏) for

as many variables X as you can fit in memory

▪ Average them in groups

▪ Take median of averages

 Problem: Streams never end
▪ We assumed there was a number n,

the number of positions in the stream

▪ But real streams go on forever, so n is
a variable – the number of inputs seen so far

26

 (1) The variables X have n as a factor –
keep n separately; just hold the count in X

 (2) Suppose we can only store k counts;
We must throw some Xs out as time goes on:
▪ Objective: Each starting time t is selected with

probability k/n

▪ Solution: (fixed-size sampling!)
▪ Choose the first k times for k variables

▪ When the nth element arrives (n > k), choose it with
probability k/n

▪ If you choose it, throw one of the previously stored
variables X out, with equal probability

27

Basic Programming:
Repetition

 Process stream as a series of
small batch jobs

▪ Chop up the live stream
into batches of X seconds

▪ Spark treats each batch
of data as an RDD and
processes them using
(normal) RDD operations

▪ The results of the RDD
operations are returned
in batches

29

Spark
Streaming

Spark

data stream

batches of X
seconds

(X ≥ 0.5 s)

result
batches

 DStream = Discretized Stream

▪ “Container” for a stream

▪ Implemented as a sequence
of RDDs

 DStreams can be …

▪ Created from “raw”
input streams

▪ Obtained by
transforming
existing DStreams

30

Each chunk =
Resilient Distributed

Dataset (RDD)

Dstream A

Dstream A’

…

From: Tathagata Das, Spark Streaming, Spark Summit 2014

 Goal: We want to count the occurrences of
each word in each batch a text stream

▪ Data received from a TCP socket 9999, each
“event” (= record) is a line of text

▪ Stream is split into RDDs, each 1 second “length”

▪ Each RDD can have 0 or more records!

▪ Output: first ten elements of each RDD

 Program structure

▪ 1. Set up the processing “pipeline”

▪ 2. Start the computation and specify termination

31

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

lines = ssc.socketTextStream("localhost", 9999)

32

Use two threads: 1 for source feed, 1 for processing

Set batch interval to 1 second

Create a DStream that will connect to
hostname:port, like localhost:9999

 Since each “event” in a DStream is a “normal” RDD-
record, we can process it with Spark operations
▪ Here: each record is a line of text

words = lines.flatMap(lambda line: line.split(" "))
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

wordCounts.pprint()

33

Split each line into words

Count each word in each batch

New DStream (and new
RDD for each batch)

Print the first ten elements of each RDD
generated in this DStream to the console

ssc.start()
ssc.awaitTermination()

 Netcat (link) utility can
redirect std input to a
TCP port (here: 9999)

 nc -lk 9999

 <type anything…>
 Hello IMMD

34

Start the computation

Wait to terminate

 ./bin/spark-submit
network_wordcount.py
localhost 9999

 Time: 2015-01-08 13:22:51

 (hello,1)
 (IMMD,1)
 ...

Terminal 1 Terminal 2

http://nc110.sourceforge.net/

val ssc = new StreamingContext (sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream (ssc, auth)

35
From: Tathagata Das, Spark Streaming, Spark Summit 2014

Twitter Streaming API

DStream tweets

RDDs, stored
in memory

Example in Scala because Twitter source was
not yet supported in Python (as of Spark 1.2)

36

val ssc = new StreamingContext (sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream (ssc, auth)
val hashTags = tweets.flatMap(status => getTags(status))

Spark
flatMap

In Python:
lambda status: getTags(status)

Transformed
DStream

Twitter Streaming API

DStream tweets

DStream hashTags
[#cat, #dog,…]

New RDD for
each batch

From: Tathagata Das, Spark Streaming, Spark Summit 2014

37

…
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Output: write to external storage

DStream tweets

DStream hashTags

Save each
batch to HDFS

From: Tathagata Das, Spark Streaming, Spark Summit 2014

Advanced Programming

 Many “normal” Spark transformations are
available, and some additional ones

39

map flatMap filter

repartition union count

reduce count countByValue

reduceByKey join cogroup

transform updateStateByKey

 The transform operation applies an arbitrary RDD-
to-RDD function (i.e. a transformation) on each RDD
in a DStream

▪ Allows using any RDD operation not in the DStream API

 Example: join each RDD in a DStream with additional
(precomputed) information

“Normal” RDD containing spam information
spamInfoRDD = sc.pickleFile(<loadPath>)
join data stream with spamInfoRDD
cleanDStream = wordCounts.transform(lambda

rdd: rdd.join(spamInfoRDD).filter(...))

40

 Allows to maintain arbitrary state and update it
with new data from a stream
▪ Input DStream contains (key, value)-pairs

 Two components:
▪ State: any datatype (e.g. primitive, object, list,…)

▪ Update function f of the form:
newState = f (newValues, oldState)

 f will be called for each key k separately;
newValues is a sequence of new values (for k)

 Usage:
▪ statesDStream = inputDStream.updateStateByKey(f)

41

The updateStateByKey method returns a new DStream
which contains RDDs that has the state data of each key

Different for each <word>!

 We want to count number of occurrences of each
word since the start of the stream

 The input DStream contains pairs (<word>, 1)
 We need a separate state for each encountered

word w, namely a count of w (= integer)
 The update function in Python:

def updateFunction (newValues, oldCount):
if oldCount is None:

oldCount = 0
return sum (newValues, oldCount)

42

This is a sequence of 1’s for a current word w
since last call of the updateFunction (for w)

Python’s sum(iterable[, start])
(https://docs.python.org/2/library/functions.html#sum)

…
def updateFunc(new_values, last_sum):

return sum(new_values) + (last_sum or 0)

lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
running_counts = lines.flatMap(lambda line: line.split(" "))\

.map(lambda word: (word, 1))\

.updateStateByKey(updateFunc)

running_counts.pprint()

Start the processing pipeline
ssc.start()
ssc.awaitTermination()

43

Call: stateful_network_wordcount.py localhost 9999

https://github.com/apache/spark/blob/master/examples/src/main/python/streaming/stateful_network_wordcount.py
https://github.com/apache/spark/blob/master/examples/src/main/python/streaming/stateful_network_wordcount.py

Window Operations

 Transformations over a sliding window of data, i.e.
most recent stream fragment of fixed length

 Here, a windowed operation is performed every 2
sec. (= sliding interval) over the last 3 sec. of data (=
window length)

 Example: create a new DStream via
window (windowLength, slideInterval)

45

Spark Streaming Programming Guide v1.2,

http://spark.apache.org/docs/latest/streaming-programming-guide.html

 window (windowLength, slideInterval)
▪ Construct a new Dstream (Example 1)

 reduceByKeyAndWindow (func[, invFunc],
windowLength, slideInterval, [numTasks])
▪ Example 2

 countByWindow (windowLength, slideInterval)
▪ Sliding window count of elements in the stream

 reduceByWindow (func, windowLength,
slideInterval)
▪ A new single-element stream from aggregating

elements over a sliding interval using func

46

47

val ssc = new StreamingContext (sparkContext, Seconds(1))
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

Sliding window
operation

Window
length

Sliding
interval

From: Tathagata Das, Spark Streaming, Spark Summit 2014

 We do count of word occurrences every 10 sec. over
the last 30 sec. of stream data
▪ Again, input stream contains pairs (<word>, 1)

 Here: reduceByKeyAndWindow (func, invFunc,
windowLength, slideInterval, [numTasks])

 func is clear (= adding up counts), but why invFunc?

48

 invFunc “substracts” values which leave the window

▪ => Efficient handling by reusing the result of previous window

windowedWordCounts =
pairs.reduceByKeyAndWindow(lambda x, y: x + y,
lambda x, y: x - y, 30, 10)

Questions?

