Mining Massive Datasets

Lecture 13

Artur Andrzejak http://pvs.ifi.uni-heidelberg.de

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Note on Slides

A substantial part of these slides come (either verbatim or in a modified form) from the book Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University). For more information, see the website accompanying the book: <u>http://www.mmds.org</u>.

Infinite Data

Programming in Spark & MapReduce

Counting Distinct Elements in a Stream

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far
- Obvious approach:

Maintain the set of elements seen so far

 That is, keep a hash table of all the distinct elements seen so far

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function *h* that maps each of the
 N elements to at least log₂ *N* bits
- For each stream element *a*, let *r(a)* be the number of trailing **0s** in *h(a)*
 - r(a) = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - R = max_a r(a), over all the items a seen so far
- Estimated number of distinct elements = 2^R

Flajolet-Martin Approach: Example R=~ 11 C : 12 1 100 2 $G \longrightarrow 2048 : 000000 71$ d2n2-> 33

Why It Works: Intuition

- <u>Very very rough and heuristic</u> intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of *a*s hash to *****0**
 - About 25% of *a*s hash to ****00**
 - So, if we saw the longest tail of *r=2* (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

- Thus, 2^R will almost always be around m!
- Note: Compare to proof-of-work in Bitcoin ③

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros is 2^{-r}
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least *r* zeros is 2^{-r}
- Then, the probability of NOT seeing a tail of length r among m elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of NOT finding a tail of length r is:
 - If *m* << 2^r, then prob. tends to 1
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \to 0$

So, the probability of finding a tail of length r tends to 0

- If *m* >> 2^r, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0 \text{ as } m/2^r \rightarrow \infty$

So, the probability of finding a tail of length r tends to 1

Thus, 2^R will almost always be around m!

Why It <u>Doesn't</u> Work

- E[2^R] is actually infinite; Why?
- Recall that $E[X] = \sum_{X=x} P[X = x] \cdot x$ Here $x = 2^1, \dots, 2^R, \dots$
- Probabilities P[X = x] are:
 - Let r be such that $2^r \gg m$ (m is #elements seen so far)
 - Let p > 0 be probability that r was the largest number of 0's at the end of the hash value for any of the *m* elements
 - Then the probability of finding r + 1 to be the largest number of 0's instead is at least p/2
- So: Probability $P[X = 2^{R+1}]$ halves when $R \rightarrow R+1$, but value 2^{R+1} doubles
- \blacksquare => The summands in E[X] remain ~constant
- => We get an infinite sum as limes

Why It <u>Doesn't</u> Work

E[2^R] is actually infinite

- Workaround involves using many hash functions
 h_i and getting many samples of *R_i*
- How are samples R_i combined?
 - Average? What if we get one very large value 2^Ri?
 - Median? All estimates are a power of 2

Solution:

- Partition your samples into small groups
- Take the median of groups
- Then take the average of the medians

Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the <u>number of times</u> value i occurs in the stream
- Example stream: a, b, c, c, a, a, b, ...

$$= m_a = 3, m_b = 2, m_c = 2$$

The kth moment is defined as:

$$\sum_{i\in A} (m_i)^k$$

 $\sum (m_i)^k$ $i \in A$

- Othmoment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Example: Surprise Number

- Stream of length 100 with 11 <u>distinct</u> values
- Item <u>counts</u> (*m_i*'s): 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
- Surprise *S* = 910
- Item <u>counts</u> (*m_i*'s): 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
- Surprise S = 8110
- Q: Why is $\sum_{i \in A} (m_i)^2$ a good estimate of an uneven distribution?
- A: Because $\sum_{i \in A} (m_i)^2$ is minimized if all m_i 's are (roughly) equal

Alon-Matias-Szegedy (AMS) Method

- AMS method works for all moments
 - Useful if don't have enough RAM to keep all m_i's
- We just consider the 2nd moment $S = \sum_i m_i^2$
- We pick and keep track of "approx" variables X
- For <u>each</u> variable X we store X.el and X.val
 - X.el corresponds to the (value or ID of) item i
 - X.val corresponds to the count of item i
- Each X.el and X.val needs RAM => #X is bounded
 - But: The larger #X, the higher the accuracy of AMS

First: Only One Random Variable X

- How to set *X.val* and *X.el*?
 - Assume stream has length *n* (we relax this later)
 - Pick some random time t (t < n) to start, so that any time is equally likely
 - Let at time t the stream have item i: We set X.el = i
 - Then we maintain count *c* (*X.val = c*) of the number of *is* in the stream starting from the chosen time *t*
- Then the estimate of the 2nd moment ($\sum_i m_i^2$) is:

$$S = f(X) = n (2 \cdot c - 1)$$

• Note: We use multiple **X**s, $(X_1, X_2, ..., X_k)$ and our final estimate will be the average $S = 1/k \sum_{i=1}^{k} f(X_i)$

Example: "Approx" Variables

Stream: a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

• $n = 15, m_a = 5, m_b = 4, m_c = 3, m_d = 3$

- 2nd moment $\sum_{i \in A} (m_i)^2 = 5^2 + 4^2 + 2 \cdot 3^2 = 59$ • Assume we use 3 vars X_1 , X_2 , X_3
 - To define them, we pick random positions 3, 8, 13:

a, b, c, b, d, a, c, d, a, b, d, c, a, b

- => X_1 . el = c, X_1 . val = 3; X_2 . val = 2, X_3 . val = 2
- The estimate S of 2nd moment is then:
 - $f(X_1) = n(2 \cdot c 1) = 15 \cdot (2 \cdot 3 3) = 75; f(X_2) = f(X_3) = 45$
 - Final estimate = average of X_i 's: $S = 1/k \sum_{j=1}^{k} f(X_j) = 55$

Expectation Analysis (One X)

- 2nd moment is $S = \sum_i m_i^2$
- *c_t* ... number of times <u>item</u> at time *t* appears
 from time *t* onwards (*c₁=m_a*, *c₂=m_a-1*, *c₃=m_b*)

•
$$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$

m_i ... total count of item *i* in the stream (we are assuming stream has length **n**)

(A) Group times by the stream el. value *i* (item)

 $=\frac{1}{n}\sum_{i}n$

 $\begin{array}{c} 1 + 3 + 5 + \cdots + 2m_i - 1 \\ \text{Time t when} \\ \text{the last } i \text{ is} \\ \text{seen } (c_t = 1) \end{array}$ $\begin{array}{c} \text{Time t when} \\ \text{Time t when} \\ \text{the penultimate} \\ \text{seen } (c_t = m_i) \\ i \text{ is seen } (c_t = 2) \end{array}$

Due to (A), the content of the parentheses corresponds to a specific item *i*

Expectation Analysis

$$E[f(X)] = \frac{1}{n} \sum_{i} n \left(1 + 3 + 5 + \dots + 2m_i - 1 \right)$$

- Little side calculation: $(1 + 3 + 5 + \dots + 2m_i 1) = \sum_{i=1}^{m_i} (2i 1) = 2 \frac{m_i(m_i + 1)}{2} m_i = (m_i)^2$ Then $E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2$
- So, $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used n (2·c 1)
 - For k=3 we use: n (3·c² 3c + 1) (where c=X.val)

Why?

- For k=2: Remember we had (1 + 3 + 5 + ··· + 2m_i 1) and we showed terms 2c-1 (for c=1,...,m) sum to m²
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c 1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate of k^{th} mom.: $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2 c 1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages
- Problem: Streams never end
 - We assumed there was a number *n*, the number of positions in the stream
 - But real streams go on forever, so *n* is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
 (2) Suppose we can only store k counts; We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the nth element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

Spark Streaming

Basic Programming: Repetition

Spark Streaming: Concept

Process stream as a series of small batch jobs

- Chop up the live stream into batches of X seconds
- Spark treats each batch of data as an RDD and processes them using (normal) RDD operations
- The results of the RDD operations are returned in batches

Programming Model - DStream

- DStream = Discretized Stream
 - "Container" for a stream
 - Implemented as a sequence of RDDs
- DStreams can be ...
 - Created from "raw" input streams
 - Obtained by transforming
 existing DStreams

Example: (Stream) Word Count

- Goal: We want to count the occurrences of each word <u>in each batch</u> a text stream
 - Data received from a TCP socket 9999, each "event" (= record) is a <u>line of text</u>
 - Stream is split into RDDs, each 1 second "length"
 - Each RDD can have 0 or more records!
 - Output: first ten elements of each RDD
- Program structure
 - 1. Set up the processing "pipeline"
 - 2. Start the computation and specify termination

Word Count: Pipeline Setup /1

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

Use two threads: 1 for source feed, 1 for processing

sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

Set batch interval to 1 second

lines = ssc.socketTextStream("localhost", 9999)

Create a DStream that will connect to hostname:port, like localhost:9999

Word Count: Pipeline Setup /2

- Since each "event" in a DStream is a "normal" RDDrecord, we can process it with Spark operations
 - Here: each record is a line of text

New DStream (and new RDD for <u>each</u> batch)

Split each line into words

words = lines.flatMap(lambda line: line.split(" "))
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Count each word in each batch

wordCounts.pprint()

Print the first ten elements of each RDD generated in this DStream to the console

Word Count: Start & End

Start the computation

ssc.start()
ssc.awaitTermination()

Wait to terminate

Terminal 1

- Netcat (<u>link</u>) utility can redirect std input to a TCP port (here: 9999)
 nc -lk 9999
- <type anything...>
- Hello IMMD

 ./bin/spark-submit network_wordcount.py localhost 9999

Terminal 2

Time: 2015-01-08 13:22:51
(hello,1)
(IMMD,1)
...

Example – Get hashtags from Twitter

Example in **Scala** because Twitter source was not yet supported in Python (as of Spark 1.2)

val ssc = new StreamingContext (sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream (ssc, auth)

Get hashtags from Twitter /2

val ssc = new StreamingContext (sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream (ssc, auth)
val hashTags = tweets.flatMap(status => getTags(status))

Get hashtags from Twitter /3

val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Output: write to external storage

Spark Streaming

Advanced Programming

Transformations on DStreams

 Many "normal" Spark transformations are available, and some additional ones

map	flatMap	filter
repartition	union	count
reduce	count	countByValue
reduceByKey	join	cogroup
transform	updateStateByKey	

Operation "transform"

- The transform operation applies an arbitrary RDDto-RDD function (i.e. a transformation) on each RDD in a DStream
 - Allows using any RDD operation not in the DStream API
- Example: join each RDD in a DStream with additional (precomputed) information

"Normal" RDD containing spam information
spamInfoRDD = sc.pickleFile(<loadPath>)
join data stream with spamInfoRDD
cleanDStream = wordCounts.transform(lambda
 rdd: rdd.join(spamInfoRDD).filter(...))

Operation "updateStateByKey"

- Allows to maintain arbitrary state and update it with new data from a stream
 - Input DStream contains (key, value)-pairs
- Two components:
 - State: any datatype (e.g. primitive, object, list,...)
 - Update function f of the form: newState = f (newValues, oldState)
- f will be called for each key k <u>separately</u>; newValues is a sequence of new values (for k)
- Usage:
 - statesDStream = inputDStream.updateStateByKey(f)

The updateStateByKey method returns a <u>new DStream</u> which contains RDDs that has the state data of each key

Example for updateStateByKey

- We want to count number of occurrences of each word <u>since the start of the stream</u>
- The input DStream contains pairs (<word>, 1)
- We need a separate state for each encountered word w, namely a count of w (= integer)
- The update function in Python:

Different for each <word>!

def updateFunction (newValues, oldCount):
 if oldCount is None:
 oldCount = 0
 return sum (newValues, oldCount)

Python's sum(iterable[, start]) (https://docs.python.org/2/library/functions.html#sum) This is a sequence of 1's for a current word w since last call of the updateFunction (for w)

Excerpt from stateful_network_wordcount.py (link)

Call: stateful_network_wordcount.py localhost 9999

def updateFunc(new_values, last_sum):
 return sum(new_values) + (last_sum or 0)

lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
running_counts = lines.flatMap(lambda line: line.split(" "))\
.map(lambda word: (word, 1))\
.updateStateByKey(updateFunc)

running_counts.pprint()

```
# Start the processing pipeline
ssc.start()
ssc.awaitTermination()
```

Spark Streaming

Window Operations

Window Operations

 Transformations over a sliding window of data, i.e. most recent stream fragment of fixed length

 Here, a windowed operation is performed every 2 sec. (= sliding interval) over the last 3 sec. of data (= window length)

 Example: create a new DStream via window (windowLength, slideInterval)

Overview: Window Operations

- window (windowLength, slideInterval)
 - Construct a new Dstream (Example 1)
- reduceByKeyAndWindow (func[, invFunc], windowLength, slideInterval, [numTasks])
 - Example 2
- countByWindow (windowLength, slideInterval)
 - Sliding window count of elements in the stream
- reduceByWindow (func, windowLength, slideInterval)
 - A new single-element stream from aggregating elements over a sliding interval using func

Window Op Example 1 (Scala)

val ssc = new StreamingContext (sparkContext, Seconds(1))
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

Word Count in a Window (Ex. 2)

- We do count of word occurrences every 10 sec. over the last 30 sec. of stream data
 - Again, input stream contains pairs (<word>, 1)

windowedWordCounts =
pairs.reduceByKeyAndWindow(lambda x, y: x + y,
lambda x, y: x - y, 30, 10)

- Here: reduceByKeyAndWindow (func, invFunc, windowLength, slideInterval, [numTasks])
- func is clear (= adding up counts), but why invFunc?
- invFunc "substracts" values which leave the window
 - => Efficient handling by reusing the result of previous window

Thank you.

Questions?

Additional Slides