

Universität Heidelberg

Fakultät für Physik und Astronomie

Exercises Robotics 5

Exercises D-H: SCARA Manipulator

As another example of the general procedure, consider the SCARA manipulator.

This manipulator, consists of an RRP arm and a one degree-of-freedom wrist, whose motion is a roll about the vertical axis.

Exercises Denavit-Hartenberg

Variable coordinates are in RED

Link	a_i	$lpha_i$	d_i	$ heta_i$
1	a_1	0	0	θ_1
2	a_2	180	0	θ_2
3	0	0	d ₃	0
4	0	0	d_4	θ_4

kinematic decoupling (orientation)

From Euler Angle (lecture 3)

$$R_{ZYZ} = \begin{bmatrix} c_{\phi} c_{\theta} c_{\psi} - s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi} - s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\ s_{\phi} c_{\theta} c_{\psi} + c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi} + c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\ -s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

From Euler Angle spherical wrist (lecture 3)

$$T_6^3 = A_4 A_5 A_6 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -s_4 c_6 - c_4 c_5 s_6 & c_4 s_5 & d_6^* c_4 s_5 \\ c_5 c_6 s_4 + c_4 s_6 & c_4 c_6 - c_5 s_4 s_6 & s_4 s_5 & d_6^* s_4 s_5 \\ -c_6 s_5 & s_5 s_6 & c_5 & d_6^* c_5 \\ 0 & 0 & 1 \end{bmatrix}$$

Let $\phi = \theta_4^*, \theta = \theta_5^*$, and $\psi = \theta_6^*$

$$\boldsymbol{R}(\boldsymbol{\phi}) = \boldsymbol{R}_{z}(\varphi)\boldsymbol{R}_{y'}(\vartheta)\boldsymbol{R}_{z''}(\psi) = \begin{bmatrix} c_{\varphi}c_{\vartheta}c_{\psi} - s_{\varphi}s_{\psi} & -c_{\varphi}c_{\vartheta}s_{\psi} - s_{\varphi}c_{\psi} & c_{\varphi}s_{\vartheta} \\ s_{\varphi}c_{\vartheta}c_{\psi} + c_{\varphi}s_{\psi} & -s_{\varphi}c_{\vartheta}s_{\psi} + c_{\varphi}c_{\psi} & s_{\varphi}s_{\vartheta} \\ -s_{\vartheta}c_{\psi} & s_{\vartheta}s_{\psi} & c_{\vartheta} \end{bmatrix}$$

It is useful to solve the *inverse problem*, that is to determine the **set of Euler** angles corresponding to a given rotation matrix (known)

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

By considering the elements [1, 3] and [2, 3] $\varphi = \text{Atan}2(r_{23}, r_{13})$

Then, squaring and summing the elements [1, 3] and [2, 3] and using the element [3, 3] yields

$$\vartheta = \operatorname{Atan2}\left(\sqrt{r_{13}^2 + r_{23}^2, r_{33}}\right)$$

The choice of the positive sign for the term $r_{13}^2 + r_{23}^2$ limits the range of feasible values of ϑ to $(0, \pi)$.

On this assumption, considering the elements [3, 1] and [3, 2] gives

$$\psi = \operatorname{Atan2}(r_{32}, -r_{31})$$

Inverse Kinematics: RPR Arm

The transformation from the base 0 to the end effector 4 is a rotation matrix given by:

$$R = \begin{bmatrix} c_{\alpha} & s_{\alpha} & 0\\ s_{\alpha} & -c_{\alpha} & 0\\ 0 & 0 & -1 \end{bmatrix} \qquad \theta_1 + \theta_2 - \theta_4 = \alpha = A \tan(r_{11}, r_{12})$$

We see from this that $\theta_2 = A \tan(c_2, \pm \sqrt{1-c_2})$

where
$$c_2 = \frac{o_x^2 + o_y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

$$\theta_1 = A \tan(o_x, o_y) - A \tan(a_1 + a_2 c_2, a_2 s_2).$$

We may then determine θ_4 from

$$\theta_4 = \theta_1 + \theta_2 - \alpha = \theta_1 + \theta_2 - A \tan(r_{11}, r_{12}).$$

Finally d_3 is given as $d_3 = o_z + d_4$.

To find Θ_2 : if we square and sum P_x and P_y , we can get an expression in Θ_2 :

$$P_x^2 + P_y^2 = (a_1C_1 + a_2C_{1-2})^2 + (a_1S_1 + a_2S_{1-2})^2$$

$$P_x^2 + P_y^2 = a_1^2 + a_2^2 + 2a_1a_2C_1(C_1C_2 + S_1S_2) + 2a_1a_2S_1(S_1C_2 - S_2C_1)$$

$$P_x^2 + P_y^2 = a_1^2 + a_2^2 + 2a_1a_2C_1^2C_2 + 2a_1a_2S_1^2C_2$$
$$P_x^2 + P_y^2 = a_1^2 + a_2^2 + 2a_1a_2C_2$$

$$C_2 = \frac{P_x^2 + P_y^2 - a_1^2 - a_2^2}{2a_1a_2} \ ; \ S_2 = \sqrt{1 - C_2^2}$$

$$\Theta_2 = \pm \cos^{-1}\left(\frac{P_x^2 + P_y^2 - a_1^2 - a_2^2}{2a_1a_2}\right)$$

Solution to Θ_2 of Adept, as seen from above (along Z axis)

To solve for Θ_1 , we solve for the following:

$$a_1C_1 + a_2C_{1-2} = P_x \qquad Two \ equations \ in \ two \\ a_1S_1 + a_2S_{1-2} = P_y \qquad unknowns \ (C_1, S_1) \\ (\Theta_2 \ known \ from \ above)$$

$$a_1C_1 + a_2C_1C_2 + a_2S_1S_2 = P_x$$
, $a_1S_1 + a_2S_1C_2 - a_2S_2C_1 = P_y$

$$(a_1 + a_2C_2)C_1 + (a_2S_2)S_1 = P_x$$
, $(-a_2S_2)C_1 + (a_1 + a_2C_2)S_1 = P_y$

$$S_1 = \frac{a_2 S_2 P_x + (a_1 + a_2 C_2) P_y}{(a_2 S_2)^2 + (a_1 + a_2 C_2)^2}$$

$$C_1 = \frac{(a_1 + a_2C_2)P_x - a_2S_2P_y}{(a_2S_2)^2 + (a_1 + a_2C_2)^2}$$

$$\Theta_1 = atan_2(a_2S_2P_x + (a_1 + a_2C_2)P_y, (a_1 + a_2C_2)P_x - a_2S_2P_y)$$

To solve for q_3 :

$$P_z = d_1 - q_3 - d_4$$
; $q_3 = d_1 - d_4 - P_z$

To solve for Θ_4 : The final roll angle cannot be determined from the position vector $[P_x, P_y, P_z]$. If we are given the orientation matrix, then we can use the ratios of N_x, N_y to find Θ_4

Example solution ignoring Θ_4 with 2 arm positions

Example Solution (no Θ_4) if $a_1 = \sqrt{3}$, $a_2 = 1$, $d_1 = 5$, $d_4 = 2$ and P= $\sqrt{3}$,-1,1], solve for joint variables:

$$\Theta_2 = \pm Cos^{-1} \left(\frac{(P_x^2 + P_y^2 - a_1^2 - a_2^2)}{2a_1 a_2} \right) = \pm Cos^{-1} (\frac{0}{2\sqrt{3}}) = \pm 90^{\circ}$$

$$\Theta_1 = atan_2(a_2S_2P_x + (a_1 + a_2C_2)P_y, (a_1 + a_2C_2)P_x - a_2S_2P_y)$$

$$if \Theta_2 = +90^\circ, \ \Theta_1 = atan_2(0,4) = 0^\circ$$

 $if \Theta_2 = -90^\circ, \ \Theta_1 = atan_2(-\sqrt{3},1) = -60^\circ$

$$q_3 = d_1 - d_4 - P_z = 5 - 2 - 1 = 2$$

Two Solutions:

$$\begin{array}{ccc} \frac{\Theta_1}{0^{\circ}} & \frac{\Theta_2}{90^{\circ}} & \frac{q_3}{2} \\ -60^{\circ} & -90^{\circ} & 2 \end{array}$$

Thank you for your Attention!!!

