UNIVERSITÄT
HEIDELBERG

Universität Heidelberg

Fakultät für Physik und Astronomie

Exercises Robotics 5

Exercises D-H: SCARA Manipulator

As another example of the general procedure, consider the SCARA manipulator. This manipulator, consists of an RRP arm and a one degree-of-freedom wrist, whose motion is a roll about the vertical axis.

Exercises Denavit-Hartenberg

Inverse Kinematics: Spherical Wirst

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

* variable

Coordinates of the end-effector respect to the base (in this case is link 3 the base which is not visible)
$=\left[\begin{array}{cccc}c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\ s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\ -s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\ 0 & 0 & 0 & 1\end{array}\right]$
around the frame x4 y4 z4

Inverse Kinematics: Spherical Wirst

kinematic decoupling (orientation)

From Euler Angle (lecture 3)

$$
R_{Z Y Z}=\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

From Euler Angle spherical wrist (lecture 3)

$$
T_{6}^{3}=A_{4} A_{5} A_{6}=\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -s_{4} c_{6}-c_{4} c_{5} s_{6} & c_{4} s_{5} & d_{6}^{*} c_{4} s_{5} \\
c_{5} c_{6} s_{4}+c_{4} s_{6} & c_{4} c_{6}-c_{5} s_{4} s_{6} & s_{4} s_{5} & d_{6}^{*} s_{4} s_{5} \\
-c_{6} s_{5} & s_{5} s_{6} & c_{5} & d_{6}^{*} c_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Let $\phi=\theta_{4}^{*}, \theta=\theta_{5}^{*}$, and $\psi=\theta_{6}^{*}$

Inverse Kinematics: Spherical Wirst

$$
\boldsymbol{R}(\boldsymbol{\phi})=\boldsymbol{R}_{z}(\varphi) \boldsymbol{R}_{y^{\prime}}(\vartheta) \boldsymbol{R}_{z^{\prime \prime}}(\psi)=\left[\begin{array}{ccc}
c_{\varphi} c_{\vartheta} c_{\psi}-s_{\varphi} s_{\psi} & -c_{\varphi} c_{\vartheta} s_{\psi}-s_{\varphi} c_{\psi} & c_{\varphi} s_{\vartheta} \\
s_{\varphi} c_{\vartheta} c_{\psi}+c_{\varphi} s_{\psi} & -s_{\varphi} c_{\vartheta} s_{\psi}+c_{\varphi} c_{\psi} & s_{\varphi} s_{\vartheta} \\
-s_{\vartheta} c_{\psi} & s_{\vartheta} s_{\psi} & c_{\vartheta}
\end{array}\right]
$$

It is useful to solve the inverse problem, that is to determine the set of Euler angles corresponding to a given rotation matrix (known)

$$
\boldsymbol{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

By considering the elements [1, 3] and [2, 3]

$$
\varphi=\operatorname{Atan} 2\left(r_{23}, r_{13}\right)
$$

Inverse Kinematics: Spherical Wirst

Then, squaring and summing the elements $[1,3]$ and $[2,3]$ and using the element [3, 3] yields

$$
\vartheta=\operatorname{Atan} 2\left(\sqrt{r_{13}^{2}+r_{23}^{2}}, r_{33}\right)
$$

The choice of the positive sign for the term $r_{13}+r^{2}{ }_{23}$ limits the range of feasible values of ϑ to $(0, \pi)$.

On this assumption, considering the elements $[3,1]$ and $[3,2]$ gives

$$
\psi=\operatorname{Atan} 2\left(r_{32},-r_{31}\right)
$$

Inverse Kinematics: RPR Arm

Note:

q_{2} is NOT a DH variable!

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}=\mathrm{q}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \\
& \mathrm{p}_{\mathrm{y}}=\mathrm{q}_{3} \mathrm{c}_{2} \mathrm{~s}_{1} \\
& \mathrm{p}_{\mathrm{z}}=\mathrm{d}_{1}+\mathrm{q}_{3} \mathrm{~s}_{2}
\end{aligned}
$$

$$
\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}+\left(\mathrm{p}_{\mathrm{z}}-\mathrm{d}_{1}\right)^{2}=\mathrm{q}_{3}^{2}
$$

$$
q_{3}=+\sqrt{p_{x}^{2}+p_{y}^{2}+\left(p_{z}-d_{1}\right)^{2}}
$$

our choice: take here only the positive value...
if $\mathrm{q}_{3}=0$, then q_{1} and q_{2} remain both undefined (stop); else

$$
\mathrm{q}_{2}=\operatorname{ATAN} 2\left\{\left(\mathrm{p}_{\mathrm{z}}-\mathrm{d}_{1}\right) / \mathrm{q}_{3}, \pm \sqrt{\left(\mathrm{p}_{\mathrm{x}}^{2}+\mathrm{p}_{\mathrm{y}}^{2}\right) / \mathrm{q}_{3}^{2}}\right\}
$$

if $p_{x}^{2}+p_{y}^{2}=0$, then q_{1} remains undefined (stop); else
(if it stops, a singular case: ∞^{2} or ∞^{1} solutions)

$$
\mathrm{q}_{1}=\operatorname{ATAN} 2\left\{\mathrm{p}_{\mathrm{y}} / \mathrm{c}_{2}, \mathrm{p}_{\mathrm{x}} / \mathrm{c}_{2}\right\} \quad\left(2 \text { regular solutions }\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}\right)
$$

Inverse Kinematics: SCARA Manupulator

Inverse Kinematics: SCARA Manupulator

Inverse Kinematics: SCARA Manipulator

The transformation from the base 0 to the end effector 4 is a rotation matrix given by:

$$
R=\left[\begin{array}{ccc}
c_{\alpha} & s_{\alpha} & 0 \\
s_{\alpha} & -c_{\alpha} & 0 \\
0 & 0 & -1
\end{array}\right] \quad \theta_{1}+\theta_{2}-\theta_{4}=\alpha=A \tan \left(r_{11}, r_{12}\right)
$$

We see from this that $\quad \theta_{2}=A \tan \left(c_{2}, \pm \sqrt{1-c_{2}}\right)$

$$
\begin{aligned}
& \text { where } \quad c_{2}=\frac{o_{x}^{2}+o_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} \\
& \theta_{1}=A \tan \left(o_{x}, o_{y}\right)-A \tan \left(a_{1}+a_{2} c_{2}, a_{2} s_{2}\right) .
\end{aligned}
$$

We may then determine θ_{4} from

$$
\theta_{4}=\theta_{1}+\theta_{2}-\alpha=\theta_{1}+\theta_{2}-A \tan \left(r_{11}, r_{12}\right) .
$$

Finally d_{3} is given as $d_{3}=o_{z}+d_{4}$.

Inverse Kinematics: SCARA Manipulator

To find Θ_{2} : if we square and sum P_{x} and P_{y}, we can get an expression in Θ_{2} :

$$
\begin{gathered}
P_{x}^{2}+P_{y}^{2}=\left(a_{1} C_{1}+a_{2} C_{1-2}\right)^{2}+\left(a_{1} S_{1}+a_{2} S_{1-2}\right)^{2} \\
P_{x}^{2}+P_{y}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} C_{1}\left(C_{1} C_{2}+S_{1} S_{2}\right)+2 a_{1} a_{2} S_{1}\left(S_{1} C_{2}-S_{2} C_{1}\right) \\
P_{x}^{2}+P_{y}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} C_{1}^{2} C_{2}+2 a_{1} a_{2} S_{1}^{2} C_{2} \\
P_{x}^{2}+P_{y}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} C_{2} \\
C_{2}=\frac{P_{x}^{2}+P_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} ; S_{2}=\sqrt{1-C_{2}^{2}} \\
\Theta_{2}= \pm \operatorname{Cos}^{-1}\left(\frac{P_{x}^{2}+P_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)
\end{gathered}
$$

Inverse Kinematics: SCARA Manipulator

To solve for Θ_{1}, we solve for the following:

$$
\begin{gathered}
a_{1} C_{1}+a_{2} C_{1-2}=P_{x} \quad \begin{array}{l}
\text { Two equations in two } \\
a_{1} S_{1}+a_{2} S_{1-2}=P_{y} \\
\text { unknowns (} \left.C_{1}, S_{1}\right) \\
\left(\Theta_{2} \text { known from above }\right)
\end{array} \\
a_{1} C_{1}+a_{2} C_{1} C_{2}+a_{2} S_{1} S_{2}=P_{x}, a_{1} S_{1}+a_{2} S_{1} C_{2}-a_{2} S_{2} C_{1}=P_{y} \\
\left(a_{1}+a_{2} C_{2}\right) C_{1}+\left(a_{2} S_{2}\right) S_{1}=P_{x},\left(-a_{2} S_{2}\right) C_{1}+\left(a_{1}+a_{2} C_{2}\right) S_{1}=P_{y} \\
S_{1}=\frac{a_{2} S_{2} P_{x}+\left(a_{1}+a_{2} C_{2}\right) P_{y}}{\left(a_{2} S_{2}\right)^{2}+\left(a_{1}+a_{2} C_{2}\right)^{2}} \\
C_{1}=\frac{\left(a_{1}+a_{2} C_{2}\right) P_{x}-a_{2} S_{2} P_{y}}{\left(a_{2} S_{2}\right)^{2}+\left(a_{1}+a_{2} C_{2}\right)^{2}} \\
\Theta_{1}=\operatorname{atan}_{2}\left(a_{2} S_{2} P_{x}+\left(a_{1}+a_{2} C_{2}\right) P_{y},\left(a_{1}+a_{2} C_{2}\right) P_{x}-a_{2} S_{2} P_{y}\right)
\end{gathered}
$$

Inverse Kinematics: SCARA Manipulator

To solve for q_{3} :

$$
P_{z}=d_{1}-q_{3}-d_{4} ; q_{3}=d_{1}-d_{4}-P_{z}
$$

To solve for Θ_{4} : The final roll angle cannot be determined from the position vector $\left[P_{x}, P_{y}, P_{z}\right]$. If we are given the orientation matrix, then we can use the ratios of N_{x}, N_{y} to find Θ_{4}

$$
\begin{gathered}
\operatorname{Tan}_{1-2-4}=\frac{S_{1-2-4}}{C_{1-2-4}}=\frac{N_{y}}{N_{x}} \\
\Theta_{1}-\Theta_{2}-\Theta_{4}=\operatorname{atan}_{2}\left(N_{y}, N_{x}\right) \\
\Theta_{4}=-\operatorname{atan}_{2}\left(N_{y}, N_{x}\right)+\Theta_{1}-\Theta_{2}
\end{gathered}
$$

Example solution ignoring Θ_{4} with 2 arm positions

Inverse Kinematics: SCARA Manipulator

Example Solution (no Θ_{4}) if $a_{1}=\sqrt{3}, a_{2}=1, d_{1}=5, d_{4}=2$ and $\left.\mathrm{P}=\sqrt{3},-1,1\right]$, solve for joint variables:

$$
\begin{gathered}
\Theta_{2}= \pm \operatorname{Cos}^{-1}\left(\frac{\left(P_{x}^{2}+P_{y}^{2}-a_{1}^{2}-a_{2}^{2}\right)}{2 a_{1} a_{2}}\right)= \pm \operatorname{Cos}^{-1}\left(\frac{0}{2 \sqrt{3}}\right)= \pm 90^{\circ} \\
\Theta_{1}=\operatorname{atan}_{2}\left(a_{2} S_{2} P_{x}+\left(a_{1}+a_{2} C_{2}\right) P_{y},\left(a_{1}+a_{2} C_{2}\right) P_{x}-a_{2} S_{2} P_{y}\right) \\
\text { if } \Theta_{2}=+90^{\circ}, \Theta_{1}=\operatorname{atan}_{2}(0,4)=0^{\circ} \\
\text { if } \Theta_{2}=-90^{\circ}, \Theta_{1}=\operatorname{atan}_{2}(-\sqrt{3}, 1)=-60^{\circ} \\
q_{3}=d_{1}-d_{4}-P_{z}=5-2-1=2
\end{gathered}
$$

Two Solutions:

$$
\begin{array}{ccc}
\frac{\Theta_{1}}{0^{\circ}} & \frac{\Theta_{2}}{90^{\circ}} & \frac{q_{3}}{2} \\
-60^{\circ} & -90^{\circ} & 2
\end{array}
$$

Thank you for your Attention!!!

