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Remarks on generation of trajectories

The trajectory with n DOF is a parameterized function g(t) with values in its motion region. The trajectory q(t) of a robot with
n DOF is then a vector of n parameterized functions g;(t),i € {1 ... n} with one common parameter:

a(t) = [q1(1), 2 (2), ..., ¢ (O]"

* Atrajectory is Ck-continuous, if all derivatives up to k-th (inclusively) exist and are continuous.

* Atrajectory is called smooth, if it is at least C2-continuous.

* The first derivative of trajectory related to the time (p(x)) is the velocity

* The second derivative of trajectory related to the time ( p(x)) is the acceleration

* The third derivative of trajectory related to the time (p (x)) is the jerk

 The smoothest curves are generated via infinitly often differentiable functions. e.g. e(x), sin(x), and log(x) (for x > 0).
* Polynomials are suitable for interpolation (problem: oscillations caused by a degree that is too high).

* Piecewise polynomials with specified degree are applicable: cubic polynomial, splines, B-Splines etc.



Trajectory planning

third-degree polynomial = four constraints:
B(t) = ag + a1t + &t + &t

if the start and end velocity is O then:

#0) = fy
#(te) = O;
#o) = 0
dte) = 0



Trajectory planning

third-degree polynomial = four constraints: The solution:
#t) = ap + art + Bt + at’

if the start and end velocity is 0 then:

#0) = g
dte) = 0
a(0) 0
0(t¢) = 0
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Trajectory planning

similar example than above:

» positions of waypoints are given (same)

» but: velocities of waypoints are different from 0 (different)

#0) = By
ate) = 0
o) = by
0(te) = 0




Trajectory planning

similar example than above:

» positions of waypaints are given (same) The solution:
» but: velocities of waypoints are different from 0 (different) ap i
9(0) = fq a1 = o | |
o(t) = 0y a; = (0 — ) — 0 — -0,
i i = s t: s
0(0) = to a3 = — (s — o) + =(0 + tio)
Oty) = 0 K f




Trajectory planning

The 2-dof Cartesian robot in Fig. 2 should execute with its end-effector the following desired
eight-shaped periodic trajectory

. ¢+ asin 2wt _ =7 g 27
pylt) = R ] witha.b.c.w > 0. fort € |0, —1|. (1)
C+— oDsSInw W J

The robot joint velocities and accelerations are bounded as
1g:l < V; > 0. ;| < A; >0, i=1,2,

while the velocity along the Cartesian path is bounded in norm as ||p,(t}|| £ Vi mar > 0. The
robot is commanded by joint accelerations.



Trajectory planning

Figure 2: A 2P robot with the end-eflector in the initial point of the desired trajectory at £ = ().

Give the symbolic expressions of the needed robot joint commands, and determine the maximum
value wy,,. of the angular frequency w in (1) so that the robot motion satishes all the constraints.
Provide then the numerical value of w,,,. using the following data: 2 = 1 [m], b = 1.5 [m],
c=3[m], ¥V} = Vo =2 [m/s], Vi pnar = 1.8 [m/s], 4; =2 [m/s?], A2 = 1.5 [m/s?].



Trajectory planning

L P cos 2wt qalt)
.Pr.l'l-r-I - . - Y L
b cos wi qalt)

oy —4aww? sin 2wt [ q=(t)
P4\t —bewr? sinwt giit) /-~

which are also the expressions of the robot joint commands. Moreover, the norm of (2) is

and

||;tid[ f 1.I|| = \,a"'-lrfjw': cos? 2wt + b2w? cos? wi.

The bounds to be satishied for all ¢ € [0, 27 /w] are then

qi| = |bweoswt| < V1 == w=s —, lga| = |2awecos2wt| < Vo = w< —,

1| = |—bsinwt| < 4, = w< 11. |'_ ga| = |—daw’sin2wt| < 4s = w< 11.'_1—'
D | da




Trajectory planning

; V. :
r % i -3 ¥ g e e - r - . FTLELD
|y ()| = wy'4a? cos? 2wt + b* cos®wt < V_ = W= = =.
¥ FTLELE Lf’_ﬁ

Theretore, the maximum feasible value of w 18

. 1 -] | -_:' .'II"‘ 1 I'I -_1'_' 1 -n  FTLILE
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Trajectory planning

Plan a cubic spline trajectory q(t) that interpolates the following data at given time instants:

t1=1, q(ty) =45°, t,=2, q(t,) =90°, t3= 2.5, q(t3) = —45¢°, t,=4, q(t,) = 45
starting with g(t;) = 0 and arriving with g(t,) = 0.
» Give an expression and the associated numerical values of the coefficients of each cubic polynomial.

* Find the maximum (absolute) values attained by the velocity g(t) and the acceleration ¢(t) over the whole motion
interval [t1, t4], as well as the time instants at which these occur.

« Check if the following bounds are satisfied throughout the motion, |§(t)] < Amax = 1000°/s? , and, if needed,
determine the minimum uniform scaling factor for the trajectory so that feasibility is recovered.



Trajectory planning

Using time normalization, the three cubic tracts of the interpolating spline are conveniently defined as

r ] % f’ - f’ r
galTa) =q + a174 +asmy + !’1;4_’."_'_3_. TA ﬁ < |0 1]- t € [il. r-_;]
2 — 11
2 3 t—ta _ -
qe(TB) = g2 + bite + bt + by, TH o €[0,1], tE€& [ta,ts]
3 — t2
; 2 : t—ts3 _ :
qo(Te) = g3 + a1Te + cato + eaTe e =T e[0,1], te€ [ta,ta],
1 — 13
with the nine coefficients a,.. ... cy determined by satisfying the nine boundary conditions
gall) = qa,

!’j_.q_ |:“::' (. !’j_.q_ |:].::' I';fh: |:“::' [ 1l ] . l!;!‘._.q_ |:].::' I';f” |:“]

ge(l) = gs.
go(l) = 0, ge(1) = gc(0) [=vs], ge(l) = gel(0).

gel(l) = gy,



Trajectory planning

ap =10,  az=3(qp-—q)-—valts —11), az = va(ta —t1) — 2(g2 — qu),

and thus
24 + by dury tlgz — )

(t2—t1)? ta—t1 (ta—t)?

qa(1)
Similarly, for the cubic B
by = vty —ta), ba=3(gs —q2) — (2o +vs3)lts —t2), by = —2(g3 — q2) + (v2 + v3)(t3 — ta2),
and thus

2b4 6lgs —qa)  dwa + 2uy
(ts —ta)*  (ts —1a)? ty —ta

ge(0)

and |' ;
2h fatr- 2u4 1. ['IJ 4 — (o
in(1) 3o+ b f e + 4wy _ blgs {;_.J-
(ts —t2)? ts — ta (ts —ta2)?

Finally, for the cubic C
] E';ﬂ:!-l — f_'g}. o ;ilal":f’ — fj';g::' — 2!.'_‘;[?‘.1 — tq]), 3 i!.'.'g[’fl — f.;-l:| — El_al"h — f}';;}.
and thus

2 6(qs — qa) duy
(ty —t5)2 (ty —t3)? ty —ty

i (0)
Imposing continuity of the acceleration at the internal knots

I",l"|.|:].:| fhji[]). !j'-”{].] l!'j'.{{[]:]



Trajectory planning

and using eqs. (28), (30-31) and (33), leads to the linear system of equations

with®
. ta — 1ty fy — ta
2ts —t1)  (t2 —t1) 3as —ae) o 3l — @) =
A ' b !. f_ f._ t
(tqs —t3) 2ty — ta) 3gs — g3) & 2 4 3gs — g2) - =,
ty — 13 £y — 1

Replacing the numerical data (degrees are used everywhere here), the system is solved as

2 1 ~175.7143 \ .,
( s ) Ab ( —215.3571 ) /5],

and the coeflicients (27), (29), and (32) of the three cubic polynomials take then the numerical values

310.7143, az = —260.7143,

g =i =45, a; =10, as
bo =gz =90, b = —8T.857], b= —121.6071, b3 = T4.4643,
cp = qz = —45, ¢ = —323.0357, ¢ = 9160714, oy = —DH03. 35T,



Trajectory planning

2la

A1 = i(t1) = §a(0) = ———— = 621.4286,
(i) = 4 (ta — £ )*
EE}-J
A = {(ta) = §p(0) = ——2_ = _972.8571,
2 1 _::' }'H( ::' (ta — fz:l' i
As = §(ts) = Ge(0) 2c2 814.2857
Az qi{ts Tl | — .t 1 N
! ! (ts —t3)?

. 2ea + b _
As = G(te) = Go(1) = =229 _ 5971429,
(ta — t3)?

As a result, none of the (absolute) values exceeds the limit of A, = 1000 °/s°.



Thank you for your Attention!!!




