UNIVERSITÄT
HEIDELBERG

Universität Heidelberg

Fakultät für Physik und Astronomie

Exercises Robotics 10

Grübler's equation

Consider the following mechanism, define:

- The number of links;
- The number of kinematics joints stating the type and the constraints that they allow; Apply then the Grübler's formula and show the number of DOF allowed by the mechanism.

Rotation Matrix

A frame $R F_{B}=\left\{O_{B}, \boldsymbol{x}_{B}, \boldsymbol{y}_{B}, z_{B}\right\}$ is displaced and rotated with respect to a fixed reference frame $R F_{A}=\left\{\boldsymbol{O}_{A}, \boldsymbol{x}_{A}, \boldsymbol{y}_{A}, \boldsymbol{z}_{A}\right\}$. The displacement is represented by the vector

$$
{ }^{A} \boldsymbol{p}_{O_{A} O_{B}}=\left(\begin{array}{lll}
3 & 7 & -1
\end{array}\right)^{T} \quad[\mathrm{~m}]
$$

while the orientation of $R F_{B}$ with respect to $R F_{A}$ is represented by the following sequence of three Euller $Z Y^{\prime} X^{\prime \prime}$ angles

$$
\alpha=\frac{\pi}{4}, \quad \beta=-\frac{\pi}{2}, \quad \gamma=0 \quad[\mathrm{rad}]
$$

For a given point P, provide the value of vector ${ }^{A} p_{O_{A} P}$ knowing that its position with respect to frame $R F_{B}$ is given by

$$
{ }^{B} \boldsymbol{p}_{O_{B} P}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)^{T} \quad[\mathrm{~m}]
$$

Rotation Matrix

$$
\boldsymbol{R}_{z}(\alpha)=\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right), \quad \boldsymbol{R}_{y}(\beta)=\left(\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right), \quad \boldsymbol{R}_{x}(\gamma)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right),
$$

$$
{ }^{A} \boldsymbol{T}_{B}=\left(\begin{array}{cc}
{ }^{A} \boldsymbol{R}_{B} & A \boldsymbol{p}_{O_{A}} O_{B} \\
\mathbf{0}^{T} & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & -\sqrt{2} / 2 & -\sqrt{2} / 2 & 3 \\
0 & \sqrt{2} / 2 & -\sqrt{2} / 2 & 7 \\
1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Exercises D-H

joint 1 (base)

Exercises D-H

a) Assign the link frames according to the Denavit-Hartenberg (DH) convention and complete the associated table of parameters, specifying the signs of all constant symbolic parameters.
b) Write explicitly the resulting DH homogeneous transformation matrices $A_{1}^{0}\left(q_{1}\right)$ to $A_{4}^{3}\left(q_{4}\right)$ and compute in an efficient way the direct kinematics $p_{4}=p_{4}(q) \in \mathbb{R}^{3}$ for the position of the origin O_{4}.
c) Sketch the robot in the stretched upward configuration and specify which is the associated configuration q_{s} in your DH convention. Compute then $p_{s}=p_{4}\left(q_{s}\right)$.
d) In the configuration $q_{0}=0$ determine the expression in the base frame of the absolute position of a Tool Center Point (TCP) which is defined in the end-effector frame by $p_{4, T C P}=\left[\begin{array}{lll}0 & 0.1 & 0.2\end{array}\right]^{T}[\mathrm{~m}]$.

Thank you for your Attention!!!

