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« Alarge part of robot kinematics is concerned with the establishment of various
coordinate systems to represent the positions and orientations of rigid objects and
with transformations among these coordinate systems.

* Indeed, the geometry of three-dimensional space and of rigid motions plays a central
role in all aspects of robotic manipulation

it is instructive to distinguish between the two fundamental approaches to
geometric reasoning:

the synthetic approach reasons directly about geometric entities (e.g., points or
lines),

the analytic approach represents these entities using coordinates or equations,
and reasoning is performed via algebraic manipulations.
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First problem in programming robots is to describe the
position of the «end-effector» in relation to a fixed frame
usually called «base»

SRS
ROBOT BASE
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ROBOT KINEMATICS: STEP 1

END-EFFECTOR

BASE

FORMULATING the position of the «end-effector» in relation
to the «base»
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B e Robot Kinematics: step 2

ROBOT IDENTIFYING the task in the
workspace of the robot

END-EFFECTOR




) s Robot Kinematics: step 3

ROBOT GENERATING the opportune
~ trajectory to accomplish the task

END-EFFECTOR

OBJECT
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JOINT 1

END
EFFECTOR

Robot joints are equipped with sensors (encoders or
resolvers) feeding back their rotation to the central CPU
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Kinematics

DIRECT

KINEMATIC;l

TASK SPACE

0’

CONFIGURATION

% INVERSE

KINEMATICS

Q:[qlaq29q3 ----- qn]

*The dimension of the configuration space must be larger or equal to the dimension
of the task space (n > m)

*To ensure the existence of Kinematics solutions.
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Forward Kinematics

The process of finding the position/orientation of the
end-effector (ry,.....r,,) given a set of joint angles
(94,-----9,,) is known as forward kinematics;

(7,1, 15....7,)) = F(q,,9,,95-----q,)

q2 C|n
s o
e .

ql CI3 S (rlr---rrm)
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Forward Kinematics

The process of finding the position/orientation of the
end-effector (ry,.....r,,) given a set of joint angles
(94,-----9,,) IS known as forward kinematics;

(7,1, 15....7,) = F(q,,9,,95-----9,)
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The process of finding the joint angles (qg,.....q,,) that realizes
a given (desired) position/orientation of the end-effector
(ry,.....r,) is known as inverse kinematics.

(QI9Q29Q3 """ 9Qn):G(r19r29r3 ----- I”m)

g, 4
s o
e -

% A Lo (rl-'"'frm)




TS
TS 5
. . .
WZ\ | UNIVERSITAT
415 | HEIDELBERG
| ZUKUNFT

SEIT 1386

The process of finding the joint angles (qg,.....q,,) that realizes
a given (desired) position/orientation of the end-effector
(ry,.....r,) is known as inverse kinematics.

(91-9>-95---9,) = G, 1,15,

S

g, d,
— q4 PRl
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Kinematics: spatial description and transformation
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Robotic manipulation implies
multiple actions:

*Moving tools

*Picking objects

*Assembling parts

END-EFFECTOR

ROBOT BASE

OBJECT

We must relate the kinematics of the object to be manipulated with
the one of the robotic manipulator.

Both the robot and the object must have Reference Frames
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> KINEMATICS: SPATIAL DESCRIPTION AND TRANSFORMATION

END-EFFECTOR " ¥
{EE}

OBJECT

Coordinated
Reference frames
* the robot

* the object

-

EE
ROBOT BASE {EE} ROBOT BASE

-
-
-
-
-
-
-
-
-
-
-
-
-

OBJECT

Finding the
Transformations
among the Reference
frames
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ROBOT BASE
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Example: Forward Kinematics
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Consider a planar manipulator with two revolute joints:

Given The joint angles :  q:=(61,62)

Unknown: The position and the
orientation of the end-effector : p:=(x,y,0)

Solution is The forward kinematics problem

L g-p.

Applying simple trigonometry on the first link, one has

{ ry = djcos(br)
Yy =— dl Sin(91)

By similar calculations on the second link, one obtains
{ r = xy+dycos(f; +602) = djcos(f;)+ dscos(fy + 6s)
y = yi; +dgsin(f; +603) = disin(f1) + dzsin(6; + 67)



Example: Forward Kinematics
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The forward kinematics problem : g—p.

{ r = dycos(8,)+ dycos(6; + 6)
y = djsin(6;) + dasin(6; + 602) '

Finally, the orientation of the manipulator is given by 8 — 61 + 6.

One has thus obtained the explicit formulae for the forward kinematics function FK.
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) Jacobian matrix

Definition

[Jacobian matrix]

The Jacobian matrix of the forward kinematics mapping at a given configuration q
is defined by:

T(gy) = D)

In the case of the planar 2-DOF manipulator, one has

Ox Oz

8, 96, —d; Sil’l(91) —dy sin(91 o s 92) —dy SiIl(91 a3 92)
J(01,00) = | 52 s | = dicos(61) +dacos(6r +62)  daycos(fy + )

o0 0 1 1

06, 06,
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Jacobian matrix

Configuration space (n=2)

< > n_.)l

—d; sin(0;) — dy sin(6; + 02) —dysin(6; + 02) %

©

J(gl, 92) = dl 003(91) > = dg 805(91 + 92) d2 COS(gl + 92) §
1 1 3

.

Remarks:

e J depends on the joint angles (61, 2);
e J has as many columns as the number of joint angles (here: 2), and as many rows as
the number of parameters of the end-effector (here: 3).

The Jacobian matrix is useful in that it gives the relationship between joint angle
velocity g and the end-effector velocity p:

p=J(q)q.



Simulation instruments
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http://openrave.org/ Open Robotics Automation Virtual Environment
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ek Example: inverse Kinematics

TASK:
to place the gripper at a desired position:

DPdes -— (mdes: ydes)

Finding the appropriate joint angles that achieve this position it constitutes
the inverse kinematics problem:
* . ( * 9*)
q - 12 Y9

Unknown = (GT, 9;)



?, Pl Example: inverse Kinematics

The forward kinematic provided:

{ Tdes = d1cos(0F)+ dgcos(6% + 63)
Ydes = disin(07) + dasin(0] + 63)

Squaring both sides of equation and
summing them up:

mﬁes =1 yﬁes = ﬂl‘i2 -} d% + 2d:1ds (cos(07) cos(0; + 05) + sin(07) sin(0; + 63))
= d? +d2 + 2d,d; cos(63).



1) e Example: inverse Kinematics

The forward kinematic provided:

i +yi, = d?+d2+2did;cos(65).

ﬂ:(2165 i ytzles o d% o d22
2d1ds

cos(63) =

$2 B 2 d2 o dz
0% = =+ arccos des T Ydes — T 7 %
2d,d,

There are two values of the angle. Why?



Example: inverse Kinematics
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(X ) Next, after some calculations, one can
des'ydes : : :
. find the expression for the two angles:

D
N

N

2 2 2 g
* * L Jes W Ydes — dl B d2
4\82 _.-+ 05 = tarccos 2.4,

2 07 = arctan 2(Ydes, Tdes) — arctan 2(kz, k1),

where

ki :=di +dycos(63) and ky := dysin(63).

Appendix for compete calculation.
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The above derivations raise the following remarks:

® |nverse kinematics calculations are in general much more difficult than forward

kinematics calculations;
e While a configuration g always yields one forward kinematics solution p, a given

desired end-effector position p4.; may correspond to zero, one, or multiple possible

IK solutions q*.
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In order to represent the relative position and orientation of one rigid body
with respect to another, we will rigidly attach coordinate frames to each
body, and then specify the geometric relationships between these

coordinate frames.

We begin with the case of rotations in the plane, and then generalize our
results to the case of orientations in a three dimensional space.

ROBOT BASE
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A rigid body is completely described in space by its position and orientation with respect to a reference frame.

x. v 7 O-xyz be the orthonormal reference frame and x, y, z be
d the unit vectors of the frame axes.

The position of a point O'on the rigid body with respect to
the coordinate frame O-xyz is expressed by the relation:

A ! )
O =0,+T0,YT 0.2,

In order to describe the rigid body orientation, it is convenient to consider an orthonormal frame attached to the
body and express its unit vectors with respect to the reference frame:

0 o /

=T, +T,Y +T,Z
! ! /

Y =Y, T+Y,Y 1TY.2
__ W, i

z Er— --.,I_.a: —l_ .a_.«,u_y + /,,Zz-



Rotation Matrix
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the three unit vectors are describing the body orientation with respect to the reference frame can be combined in
the (3 x 3) matrix

1 [« v %] [z y"z Mo
< / / / o o~ i o By '8 1T,
R=|a vy 2'|\=|2, v, z,| =2y y'y 2"y
i | 2 o oz 2Tz Tz 27z

which is termed rotation matrix

It is worth noting that the column vectors of matrix R are mutually orthogonal since they represent the unit vectors of an
orthonormal frame,

Ty =0 y Tz =0 zTx' =0.

R is an orthogonal matrix meaning that R'R = I,
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If both sides of R' R = I are postmultiplied by the inverse matrix R": R' = R™'

The above-defined rotation matrix belongs to the special orthonormal
group SO(m) of the real (m x m) matrices with othonormal columns and
determinant equal to 1; in the case of spatial rotations it 1s m = 3, whereas

in the case of planar rotations it is m = 2.
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Suppose that the reference frame O—xyz is rotated by an angle a about axis z, and
let O'—x!y'z' be the rotated frame.

The unit vectors of the new frame can be described in terms of their components with
respect to the reference frame O—xyz.

A
COS (v —S1n o 0
f . ! / _
r = | sin« Yy = | cosw 2= |4
Y 0 0 1
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Hence, the rotation matrix of frame O'—x'y/z with respect to frame O—xyz by
an angle a about axis z is:

cosa —sina 0]
R.(ao) = | sina cosa 0
0 0 1

In a similar manner if the rotation are cording other axes we obtain:

I%yﬂﬂ)

It is easy to verify that R (—v) = R/ (V) k

cos [3
0
—sin 3

0
1
0

sin 3 |
0

Rl(ﬂa)

cos 3

|
0
0

0
COS 7y

S1I 7

0

—sin 7y

COS A

=
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z);}.'
P = | Py

p = |p,

L ]

p=p, 2 +pyy +p.2 =

with respect to frame O—zyz

with respect to frame O-a'vy'~’

I

!

Y

/

z

!

p

D) Representation of a Vector

. We canrepresent P in terms of the reference O-xyz:

/

A point Pin space can be represented in the two frames



Representation of a Vector

The rotation matrix R represents the transformation matrix of the vector coordinates in
frame O-xyzinto the coordinates of the same vector in frame O'—x'y/z! .

p= Rp'.
In view of the orthogonality property, the inverse transformation is simply given by

R,.(—V) = RE(E)) k=1x,4,2 p' = RT;D.
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Representation of a point P in rotated frames

5
)ik x
: ' >

2 =l }3_

Consider two frames with common origin mutually rotated by an angle o about
the axis z. Let p and p’ be the vectors of the coordinates of a point P, expressed
. Fi o o »
in the frames O—-zyz and O—=x'y'z", respectively.
the relationship between the coordinates of P in the two frames is
| T e
Pz = Pz COSQ — P, SN
- b
Py = Pz SN + Py COS (¥

/
Pz — Pz
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p— Rotation of a Vector

Consider the vector p which is obtained by rotating a vector p° in the plane xy by

an angle « about axis z

of the reference frame .

b Todl el e e Sl e it el - s s .
Let (pg.py.p>) be the coordinates of the vector p’. The vector p has components

. : /
It is easy to recognize that p can be expressed as p = R.(a)p’.

/ ) 2 |
Px = Pg COS QX — Py, SIN QY

¥ —_— r ! 1.‘ ™\, [, ', -
Py = Pz SINQ + Py COS ¥

Pz = Pi.

where R.(«) is the same rotation matrix as in

COS (v
— | sin«

0

—smma 0

COS ¥

0

0
1

=

Y
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In sum, a rotation matrix attains three equivalent geometrical meanings:

e |t describes the mutual orientation between two coordinate frames; its
column vectors are the direction cosines of the axes of the rotated frame
with respect to the original frame.

e It represents the coordinate transformation between the coordinates of a
point expressed in two different frames (with common origin).

e [t is the operator that allows the rotation of a vector in the same coordinate
frame.
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to derive composition rules of rotation matrices, it is useful to consider the expression of a vector in two
different reference frames

Let then O—xoyozo, O—x1y121, O—X2y22. be three frames with common origin O

The vector p describing the position of a generic point in space can be expressed in each of the
above frames; let p°, p!, p?

1 1.2
p =Ryp
R j denotes the rotation matrix of Frame i with respect to Frame j pU = {fpl
p" = Ryp”

Property: Multiplication of rotation matrix provides different orientation for composite rotation

R)=R)R..



i ...  Composition of Rotation Matrices
in the call you may find different notation

R i denotes the rotation matrix from Frame i with respect to Frame j

to tOR

from

from fro m

You may find in the class these three notation with superscript and subscript on LEFT or RIGHT but the
meaning is the same!

The meaning is that:

What is in the bottom is FROM what reference we want to start

What is on top is TO what reference frame we want to go
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A representation of orientation in terms of three independent parameters constitutes a minimal
representation

A minimal representation of orientation can be obtained by using a set of three angles

First rotate about the z-axis by the angle ¢.

Next rotate about the current y-axis by the angle 6.

Finally rotate about the current z-axis by the angle .

20 .‘;'a_ .ta
.
Zp |
| LS
D .
& [\
g et ,:‘__ 7™ Ya
s H“‘-:;_ s
; Yo ’
ro {Fa Ia/ 0
VIE)
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0 NERSITAT EUler ZYZ Ang|eS

The rotation described by ZYZ angles is obtained as composition of the fol-

lowing elementary rotations :

e Rotate the reference frame by the angle ¢ about axis z: this rotation 1is
described by the matrix R.(p)

e Rotate the current frame by the angle 9 about axis vy’; this rotation is
described by the matrix R,/ (V)

e Rotate the current frame by the angle ) about axis z”; this rotation is
described by the matrix R.. (1))

The resulting frame orientation is obtained by composition of rotations
with respect to current frames,  R(¢) = R.(¢)Ry (V)R (Y)

CoCYCep — SpSyy  —CpCYSyy — SpCy
= | SpCYCyY T CpSyy  —SpCYSy T CpCy
- PS ]_9 (__:ul} PS"I} »S ?__'J‘

£

06 6

¥ sl
=

(Wal

[y
Y]




ZX'Z" Euler angles

2]

Y | Re(8) =

0 0

0 cos6 -sinB

sin® cos 6

m e g
CL o . - 5
RF ‘F-{-E-‘"""" 0
A Y ;
X q) Xr X,EX” 0
cos ¢ —-sing O
R(¢)=|sing cos¢ O @
0 0 1
cos Y —-siny O
Ry(y)=|siny cosy O
0 0 1




o Inverse problem
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R( Qf’) = R. ( P) Ry’ ( '1')) R.. (¢ ) = | 5,C9Cy -+ CoSyp  —SpChSy C CoCyy SS9
I —SPCq)y Sq9 Sqpy Cy) i

It is useful to solve the inverse problem, that is to determine the set of Euler angles corresponding
to a given rotation matrix (known)

11 Ti12 T13
R=|ra1 722 723

| 31 732 733 |

By considering the elements [1, 3] and [2, 3] @ = Atan2(ra3.713)

The function Atan2(y, x) computes the arctangent of the ratio y/x but utilizes the
sign of each argument to determine which quadrant the resulting angle belongs
to; this allows the correct determination of an angle in a range of 2.
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Then, squaring and summing the elements [1, 3] and [2, 3] and using the element
[3, 3] yields

{ 2 2
i — Atmﬁ( ris + 33, ?':f.:j)

The choice of the positive sign for the term r2,;+ r,;limits the range of feasible
values of 3 to (0, m).

On this assumption, considering the elements [3, 1] and [3, 2] gives

) = Atan2(r32., —r31)
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> ¢ % |
|
AT Ve /,‘" 2% i Us
e 3}0 s R
o ’il:a 1! 0
Yy
(1) (2)
Direct problem
Knowing the angles 2 find the matrix s 1o g . a L= o . .
L‘Prﬂ[’h' - 'b-kpr_kﬂ' 1.1-',1 _{fhﬂtﬂ S L."1 - *5(]9(-“1_{"_1 {-‘?; rL"l;
R(Cb) — Rz(‘rﬁ)R (U)R‘f”( ) = f‘:'i@r_’_':f){"b{; G r.’_':(PSu'_, H pC9 S +c r’fw 'S*FSE'}
I\ —SYCqf) S Safy Cy

Inverse problem
Knowing the matrix = find the angles

= Atan2(r23.713)

A S
|

11 T12 713
( - " 2 2

R=\|791 792 7T93 ¥ = Atan?2 \/ {3 T 733,733

| 731 732 7¥33 |

Y = Atan2(r3s, —r31).
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Another set of Euler angles originates from a representation of orientation in the
(aero)nautical field.

These are the ZYX angles, also called Rol-Pitch—Yaw angles, to denote the typical
changes of attitude of an (air)cratft.

Roll (¢) XI (North) ]
| % In this case, the angles @ = [¢p 9 y]”
represent rotations defined with respect to

v,essy & fixed frame attached to the centre of
mass of the craft

Pitch (0)
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0 s RPY Angl es

The rotation resulting from Roll-Pitch-Yaw angles can be obtained as

follows:

e Rotate the reference frame by the angle ¢» about axis = (yaw); this rotation
is described by the matrix R, (1)

e Rotate the reference frame by the angle v/ about axis y (pitch); this rotation
is described by the matrix R, (V)

e Rotate the reference frame by the angle ¢ about axis z (roll); this rotation

is described by the matrix R. () R
2
N
i
.f‘/ \ 4 L
II‘ I’| 13\\
,
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The resulting frame orientation (direct solution) is obtained by composition of
rotations with respect to the fixed frame

("'F‘:\ f_ﬁp} ('lT'j S i} S ;-1:"1 — 5 o] C L."l r‘lT: S E} i 3*."1 —|_ S @ S .L."-l

R( (/b) = R‘. (‘T?) Ry (!)) RJ‘ ( 11) = SL,-;' Cy S (W Sq9 Saf & 'f-';,: Cyp S Ww SYCyp — "-r-:-;f:- Safy

L

— Sy Ca) Safs Cy) Co

As for the Euler angles ZYZ, the inverse solution to a given rotation matrix

p = Atan?2 (-‘f'~31- "f’ll)

(i i O ' T 5 - | - .
R = rol Too To3 ¥ = Atan2 — 31, '3o + "33
rsy 732 733

| T =50 L! — AAf(illz (-‘“33 - :‘F'B ‘3) 1
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” s Roll-Pitch-Yaw angles

B ROLL 5" PITCH @
g i
Z A
P , CR(0)CT
¥ with R\(0) =
; cos® 0 sin®
y 0 1 0
P ..
e sin6 0 cos06

- YAW
1 0 0

Ry(w) =| 0 cosy —-siny
0 siny cosy

C,Rz(9)C,T |:cos ¢ —sing 0

with R;(¢) =| sin¢ cos¢ O
0 0 1




