

Robotics 1 Homogeneous Transformation Denavit & Hartenberg Notation

Kinematics: spatial description and transformation

We must relate the kinematics of the **object** to be manipulated with the one of the **robotic manipulator**.

Both the robot and the object must have Reference Frames

KINEMATICS: SPATIAL DESCRIPTION AND TRANSFORMATION

Coordinated Reference frames

- the robot
- the object

Finding the Transformations among the Reference frames

Writing the orthonormal base of the reference frame **{EE}** in terms of the coordinates of the the **{A}** frame, we obtain the following <u>Rotation Matrix</u>: $\begin{bmatrix} \nu & \nu & \nu \end{bmatrix}$

$$\sum_{EE}^{A} R = [{}^{A} X_{EE}, {}^{A} Y_{EE}, {}^{A} Z_{EE}] = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

The set of the three vectors specifes the orientation of **{EE}** respect to **{A}**.

We can express also the components *r*_{ij} as product of *unit vectors* of the orthonormal bases of **{A}** and **{EE}**.

$$A_{EE}^{A}R = [{}^{A}X_{EE}, {}^{A}Y_{EE}, {}^{A}Z_{EE}] = \begin{bmatrix} X_{EE} \cdot X_{A} \\ X_{EE} \cdot Y_{A} \\ X_{EE} \cdot Z_{A} \end{bmatrix} \begin{bmatrix} Y_{EE} \cdot X_{A} \\ Y_{EE} \cdot Y_{A} \\ Y_{EE} \cdot Z_{A} \end{bmatrix} \begin{bmatrix} Z_{EE} \cdot X_{A} \\ Z_{EE} \cdot Y_{A} \\ Z_{EE} \cdot Z_{A} \end{bmatrix}$$

$$X_{EE} \text{ expressed in } \{A\} \quad A_{X_{EE}} \\ Y_{EE} \text{ expressed in } \{A\} \quad A_{Y_{EE}} \end{bmatrix}$$

$$X_{EE} \text{ expressed in } \{A\} \quad A_{Y_{EE}} \\ Z_{EE} \text{ expressed in } \{A\} \quad A_{Z_{EE}} \end{bmatrix}$$

We can express also the components r_{ij} as product of *unit vectors* of the orthonormal bases of {A} and {EE}.

$${}_{EE}^{A}R = [{}^{A}X_{EE}, {}^{A}Y_{EE}, {}^{A}Z_{EE}] = \begin{bmatrix} {}^{EE}X_{A}^{T} \\ {}^{EE}Y_{A}^{T} \\ {}^{EE}Z_{A}^{T} \end{bmatrix} = {}^{EE}_{A}R^{T}$$

Hence is possible to express the rotation of the frame **{A}** respect to the frame **{EE}** using the transpose of the matrix:

$${}^{EE}_{A}R = {}^{A}_{EE}R^{T}$$

The frame **{EE}** is **not only** *rotated* **respect** to **{A}** but **<u>also</u> <u>***translated***</u>**.

In robotics a **Frame** is an entity described by 4 vectors:

- •3 vectors defining the rotation matrix $\rightarrow \qquad {}^{A}_{EE}R$
- •1 vector defining the translation \rightarrow $^{A}P_{EE}$

 ${}^{A}P_{EE}$ is the projection of the position of **{EE}** into the unit vectors of the frame **{A}**.

$${}^{A}P_{EE} = \begin{bmatrix} P_{EE} \cdot X_{A} \\ P_{EE} \cdot Y_{A} \\ P_{EE} \cdot Z_{A} \end{bmatrix}$$

Base + end-effector + object

General case when we know the position of an object **{O}** in a frame **{EE}** and we want to know its position respect to the frame **{A}**

- •{EE} is translated respect to {A} \rightarrow $^{A}P_{EE}$
- •{EE} is rotated respect to $\{A\} \rightarrow \qquad {}^{A}_{EE}R$

•{**O**} is represented in {**EE**} by \rightarrow $^{EE}P_O$

•{O} must be known also respect to {A} \rightarrow $^{A}P_{O}$

How to evaluate ${}^{A}P_{O}$?

 $^{EE}P_{O}$ from **{EE}** must be expressed in a frame of the same orientation of **{A}**

We account of the translation between the origin of {EE} and {A}

$${}^{A}P_{O} = {}^{A}_{EE} R \cdot {}^{EE} P_{O} + {}^{A} P_{EE}$$

 ${}^{A}P_{O} = {}^{A}_{EE}T \cdot {}^{EE}P_{O}$ A more elegant form using the transformation matrix: ${}^{A}_{EE}T$

$${}_{EE}^{A}T = \begin{bmatrix} {}_{EE}^{A}R & {}^{A}P_{EE} \\ 000 & 1 \end{bmatrix} = \begin{bmatrix} 3 \times 3 & 3 \times 1 \\ 1 \times 3 & 1 \times 1 \end{bmatrix} = \begin{bmatrix} 4 \times 4 \end{bmatrix}$$

This is called <u>*Homogeneous Transformation*</u> and it will be useful when considering multiple frames of the robot and mapping the positions to arrive at the formulation of the kinematic problems

HOMOGENEUOS TRANSFORMATIONS

global scale

0

0

1x3 perspective

Summary

Properties of T matrix

- describes the relation between reference frames (relative pose = position & orientation)
- transforms the representation of a position vector (applied vector starting from the origin of the frame) from a given frame to another frame
- it is a roto-translation operator on vectors in the three-dimensional space
- it is always invertible $(^{A}T_{B})^{-1} = ^{B}T_{A}$
- can be composed, i.e., ^AT_C = ^AT_B ^BT_C ← note: it does not commute!

Robot kinematics using homogeneous transformations

Knowing the *geometrical features* of a manipulator and associating to each link a *reference frame,* we are able to use *homogenous transformations* among the links and formulate the <u>Kinematics</u>

Robot kinematics using homogeneous transformations

Considering the four frames, arbitrary chosen on the four links, it is possible to write down the matrixes of the single homogeneous transformations.

$${}^{0}T_{1} = Rot(z, q_{1})Trasl(z, L_{1});$$

 ${}^{1}T_{2} = Trasl(x, L_{2})Rot(y, q_{2});$
 ${}^{2}T_{3} = Trasl(z, L_{3});$

Multiplication among the transformation leads to the transformation between the **BASE** $\{0\}$ and the **END-EFFECTOR** $\{3\}$ expressed in function of the configuration space variables $(q_1 \text{ and } q_2)$

$${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3} = \begin{bmatrix} C_{1}C_{2} & -S_{1} & C_{1}S_{2} \\ S_{1}C_{2} & C_{1} & S_{1}S_{2} \\ -S_{2} & 0 & C_{2} \end{bmatrix} \begin{bmatrix} L_{3}S_{2}C_{1} + L_{2}C_{1} \\ L_{3}S_{2}S_{1} + L_{2}S_{1} \\ L_{3}C_{2} + L_{1} \end{bmatrix}$$

Abbreviations: $C_i = cos(q_i)$, $S_i = sin(q_i)$

ROBOT KINEMATICS USING HOMOGENEOUS TRANSFORMATIONS

The obtained transformation is the forward kinematics of the manipulator.

$$(x_1, x_2, x_3, \dots, x_m) = F(q_1, q_2, q_3, \dots, q_n)$$

$${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3} = \begin{bmatrix} C_{1}C_{2} & -S_{1} & C_{1}S_{2} & L_{3}S_{2}C_{1} + L_{2}C_{1} \\ S_{1}C_{2} & C_{1} & S_{1}S_{2} & L_{3}S_{2}S_{1} + L_{2}S_{1} \\ -S_{2} & 0 & C_{2} & L_{3}C_{2} + L_{1} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

 x_3

ROBOT KINEMATICS USING HOMOGENEOUS TRANSFORMATIONS

Rotation of the end-effector

Coordinates of the end-effector respect to the base:

$$x = L_3 \sin \theta_2 \cos \theta_1 + L_2 \cos \theta_1$$
$$y = L_3 \sin \theta_2 \sin \theta_1 + L_2 \sin \theta_1$$
$$z = L_3 \cos \theta_2 + L_1$$

Denavit–Hartenberg Convention

A method is to be derived to define the relative position and orientation of two consecutive links;

the problem is that to determine two frames attached to the two links and compute the coordinate transformations between them.

FORWARD KINEMATICS: THE DENAVIT-HARTENBERG CONVENTION

the forward kinematics problem can be addressed using a more systematic method by the <u>Denavit-Hartenberg convention</u>.

In *D-H convention* each link has a reference frame opportunely placed and with the orthonormal axes opportunely directed

In *D-H convention* each homogeneous transformation between consecutive links is thought as **Four** consecutive transformations (link *i* in link *i-1* coordinates)

In **D-H convention** there are important 4 quantities:

- 1. Link length a_i
- 2. Link twist α_i
- 3. <u>Link offset</u> d_i
- 4. Joint angle θ_i

These quantities are always evaluated from the link *i* respect to the link *i-1*

<u>Link length</u> a_i

It is the distance between the axes *Zi* and *Zi-1* measured along *xi*

<u>Link twist</u> α_i

It is the angle between the axes *Zi* and *Zi*-1 measured around *xi*

<u>Link offset</u> d_i

It is the distance between the axes Xi and Xi-1 measured along Zi-1

<u>Joint angle</u> θ_i

It is the angle between the axes Xi and Xi-1 measured around Zi-1

The idea is composing a TABLE which will allow to find the homogeneous transformation among each pair of link

In **D-H convention** there are important 4 quantities:

- 1. Link length a_i
- 2. <u>Link twist</u> α_i
- 3. Link offset d_i
- 4. Joint angle θ_i

D-H Table convention

Create a table of link parameters a_i , d_i , α_i , θ_i .

- $a_i = \text{distance along } x_i \text{ from } o_i \text{ to the intersection of the } x_i \text{ and } z_{i-1} \text{ axes.}$
- d_i = distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint *i* is prismatic.
- α_i = the angle between z_{i-1} and z_i measured about x_i
- θ_i = the angle between x_{i-1} and x_i measured about z_{i-1} . θ_i is variable if joint *i* is revolute.

Link	a_i	α_i	d_i	θ_i
1	ð. (0 S	. *
2				
n			6	

Example 1: Planar Elbow Manipulator

First row between link 0 and 1

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Link length</u> a_1

It the distance between the axes **Z**₁ and **Z**₀ measured along **x**₁

First row between link 0 and 1

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Link twist</u> α_1

It the angle between the axes **Z**₁ and **Z**₀ measured around **X**₁

First row between link 0 and 1

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Link offset</u> d_i

It the distance between the axes **X**₁ and **X**₀ measured along **Z**₀

First row between link 0 and 1

<u>Joint angle</u> θ_i

It the angles between the axes X1 and X0 measured around Z0

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Link length</u> a_1

It the distance between the axes **Z**₂ and **Z**₁ measured along **x**₂

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Link twist</u> α_1

It the angle between the axes **Z**₂ and **Z**₁ measured around **X**₂

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Link offset</u> d_i

It the distance between the axes X2 and X1 measured along Z1

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

<u>Joint angle</u> θ_i

It the angles between the axes X2 and X1 measured around Z1

We have now two homogeneous transformation

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

$${}^{0}T_{1} = A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Rotation around Z_{0} and translation of A_{1}
$${}^{1}T_{2} = A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Rotation around Z_{1} and translation of A_{2}

Finally the forward kinematics relating the base to the end effector

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	θ_1^*
2	a_2	0	0	θ_2^*

Forward Kinematics is provided by the transformations:

$${}^{0}T_{2} = A_{1}A_{2} = \begin{bmatrix} c_{12} & -s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} \\ a_{1}s_{1} + a_{2}s_{12} \\ 0 \\ 0 \end{bmatrix}$$

Rotation of the end-effector around the axis zo Coordinates of the end-effector respect to the

base:

$$x = a_1c_1 + a_2c_{12}$$

 $y = a_1 s_1 + a_2 s_{12}$

Kinematics of Typical Manipulator Structures (D-H)

Example 2: three link planar

DH parameters for the three-link planar arm

Kinematics of Typical Manipulator Structures (D-H)

Rotation of the end-effector around the axis zo Coordinates of the end-effector respect to the base

Video D-H: how to chose references

https://www.youtube.com/watch?v=rA9tm0gTln8

Kinematics of Typical Manipulator Structures (D-H) Example 3: antropomorphic Arm

y_3 x_3 z_0 y_1 y_2 z_3 z_3 z_1 z_2 z_2 z_2 z_3 z_3

DH parameters for the anthropomorphic arm					
Link	a_i	$lpha_i$	d_i	ϑ_i	
1	0	$\pi/2$	0	ϑ_1	
2	a_2	0	0	ϑ_2	
3	a_3	0	0	ϑ_3	

To REMEMBER

- *Q*_{*i*} --> distance Zi and Zi-1 along xi
- $\pmb{\alpha}_i$ -->angle Zi and Zi-1 around xi
- d_i -->distance Xi and Xi-1 along Zi-1
- θ_i --> angle Xi and Xi-1 around Zi-1

Kinematics of Typical Manipulator Structures (D-H)

$$\mathbf{A}_{1}^{i}(\vartheta_{1}) = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{i}^{i-1}(\vartheta_{i}) = \begin{bmatrix} c_{i} & -s_{i} & 0 & a_{i}c_{i} \\ s_{i} & c_{i} & 0 & a_{i}s_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad i = 2, 3.$$

$$\mathbf{F}_{3}^{0}(\boldsymbol{q}) = \mathbf{A}_{1}^{0}\mathbf{A}_{2}^{1}\mathbf{A}_{3}^{2} = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(a_{2}c_{2}+a_{3}c_{23}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(a_{2}c_{2}+a_{3}c_{23}) \\ s_{23} & c_{23} & 0 & a_{2}s_{2}+a_{3}s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 4: Three-Link Cylindrical Robot

Example 4: Three-Link Cylindrical Robot

Link	a_i	α_i	d_i	θ_i
1	0	0	d_1	θ_1^*
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

* variable

Forward Kinematics is provided by the transformations:

$T_{2}^{0} =$	$A_{1}A_{2}A_{3}$	=	
-3 -	11112113		

c_1	0	$-s_1$	$-s_1d_3$
s_1	0	c_1	c_1d_3
0	-1	0	$d_1 + d_2$
0	0	0	1

Rotation of the end-effector around the frame x0 y0 z0 (which is a rotation around z0)

 z_3

Coordinates of the end-effector respect to the base

Recalling Rotation matrix

$$\boldsymbol{R}_{z}(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{R}_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \qquad \boldsymbol{R}_{x}(\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}$$

Example 5: Spherical Wrist

Assume in this case the base as the link 3 is not visible, and compute normally D-H.

Example 5: Spherical Wrist

Example 6: Cylindrical Manipulator + Spherical Wrist (Example 4-5 assembled)

Example 6: Cylindrical Manipulator with Spherical Wrist (Example 2-3 assembled)

 $T_6^0 = \begin{bmatrix} c_1 & 0 & -s_1 & -s_1d_3 \\ s_1 & 0 & c_1 & c_1d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_4c_5c_6 - s_4s_6 & -c_4c_5s_6 - s_4c_6 & c_4s_5 \\ s_4c_5c_6 + c_4s_6 & -s_4c_5s_6 + c_4c_6 & s_4s_5 \\ -s_5c_6 & s_5c_6 & c_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Rotation of the end-effector respect the frame x0 y0 z0

- $r_{11} = c_1 c_4 c_5 c_6 c_1 s_4 s_6 + s_1 s_5 c_6$
- $r_{21} = s_1 c_4 c_5 c_6 s_1 s_4 s_6 c_1 s_5 c_6$
- $r_{31} = -s_4 c_5 c_6 c_4 s_6$
- $r_{12} = -c_1 c_4 c_5 s_6 c_1 s_4 c_6 s_1 s_5 c_6$
- $r_{22} = -s_1 c_4 c_5 s_6 s_1 s_4 s_6 + c_1 s_5 c_6$
- $r_{32} = s_4 c_5 c_6 c_4 c_6$
- $r_{13} = c_1 c_4 s_5 s_1 c_5$
- $r_{23} = s_1 c_4 s_5 + c_1 c_5$

 $r_{33} = -s_4 s_5$

Coordinates of the end-effector respect to the base

$$d_x = c_1 c_4 s_5 d_6 - s_1 c_5 d_6 - s_1 d_3$$

$$d_y = s_1 c_4 s_5 d_6 + c_1 c_5 d_6 + c_1 d_3$$

$$d_z = -s_4 s_5 d_6 + d_1 + d_2.$$

Kinematics of Typical Manipulator Structures (D-H)

Example 7: spherical Arm

DH parameters for the spherical arm

Link	a_i	α_i	d_i	ϑ_i
1	0	$-\pi/2$	0	ϑ_1
2	0	$\pi/2$	d_2	ϑ_2
3	0	0	d_3	0

To REMEMBER
Ø _i > distance Zi and Zi-1 along xi
$oldsymbol{lpha}_i$ >angle Zi and Zi-1 around xi
d _i >distance Xi and Xi-1 along Zi-1
$oldsymbol{ heta}_{i}$ > angle Xi and Xi-1 around Zi-1

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Recalling Rotation matrix

$$\boldsymbol{R}_{z}(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{R}_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \qquad \boldsymbol{R}_{x}(\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}$$

Kinematics of Typical Manipulator Structures (D-H) UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 **Example 7: spherical Arm** z_3 $\boldsymbol{A}_{1}^{0}(\vartheta_{1}) = \begin{vmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \qquad \boldsymbol{A}_{2}^{1}(\vartheta_{2}) = \begin{vmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{vmatrix}$ z_2 ZO A $\boldsymbol{A}_{3}^{2}(d_{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$ Spherical arm $\boldsymbol{T}_{3}^{0}(\boldsymbol{q}) = \boldsymbol{A}_{1}^{0}\boldsymbol{A}_{2}^{1}\boldsymbol{A}_{3}^{2} = \begin{bmatrix} c_{1}c_{2} & -s_{1} & c_{1}s_{2} & c_{1}s_{2}d_{3} - s_{1}d_{2} \\ s_{1}c_{2} & c_{1} & s_{1}s_{2} & s_{1}s_{2}d_{3} + c_{1}d_{2} \\ -s_{2} & 0 & c_{2} & c_{2}d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Kinematics of Typical Manipulator Structures (D-H)

Recall Example 3: spherical wrist

DH parameters for the spherical wrist

Link	a_i	α_i	d_i	ϑ_i
4	0	$-\pi/2$	0	ϑ_4
5	0	$\pi/2$	0	ϑ_5
6	0	0	d_6	ϑ_6

Kinematics of Typical Manipulator Structures (D-H)

Recall Example 3: spherical wrist

$$\mathbf{A}_{3}^{\mathbf{z}_{3}} \mathbf{x}_{5} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{A}_{5}^{4}(\vartheta_{5}) = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{A}_{5}^{4}(\vartheta_{5}) = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{A}_{5}^{4}(\vartheta_{5}) = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$\boldsymbol{T}_{6}^{3}(\boldsymbol{q}) = \boldsymbol{A}_{4}^{3}\boldsymbol{A}_{5}^{4}\boldsymbol{A}_{6}^{5} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 8: Stanford Manipulator

 z_6

 y_6

 d_6

Spherical wrist

 x_6

$$\boldsymbol{T}_{6}^{3}(\boldsymbol{q}) = \boldsymbol{A}_{4}^{3}\boldsymbol{A}_{5}^{4}\boldsymbol{A}_{6}^{5} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $z_3 \uparrow x_5$

 x_4 x_3

V5

Z

 $T_6^0 = T_3^0 T_6^3$

$$\boldsymbol{T}_{3}^{0}(\boldsymbol{q}) = \boldsymbol{A}_{1}^{0}\boldsymbol{A}_{2}^{1}\boldsymbol{A}_{3}^{2} = \begin{bmatrix} c_{1}c_{2} & -s_{1} & c_{1}s_{2} & c_{1}s_{2}d_{3} - s_{1}d_{2} \\ s_{1}c_{2} & c_{1} & s_{1}s_{2} & s_{1}s_{2}d_{3} + c_{1}d_{2} \\ -s_{2} & 0 & c_{2} & c_{2}d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 9: Stanford Manipulator (entire structure)

This manipulator is an example of a spherical (RRP) manipulator with a spherical wrist. This manipulator has an offset in the shoulder joint that slightly complicates both the forward and inverse kinematics problems.

 z_0

We first establish the joint coordinate frames using the D-H convention as shown below.

Example 9: Stanford Manipulator

Link	d_i	a_i	α_i	θ_i
1	0	0	-90	θ_1
2	d2 d₃	0	+90	θ_2
3	d,	0	0	0
4	0	0	-90	θ_4
5	0	0	+90	θ_{s}
6	d_6	0	0	$\theta_{{}_{6}}$

It is straightforward to compute the matrices Ai as

$$A_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{4} = \begin{bmatrix} c_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & c_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$A_{2} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_{6} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 9: Stanford Manipulator

$$T_6^0 \text{ is then given as} \quad T_6^0 = A_1 \cdots A_6$$
$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation of the end-effector respect the frame x0 y0 z0

 d_3

 x_3

T4

EXAMPLE 10: SCARA Manipulator

As another example of the general procedure, consider the SCARA manipulator.

This manipulator, consists of an RRP arm and a one degree-of-freedom wrist, whose motion is a roll about the vertical axis.

EXAMPLE 10: SCARA Manipulator

Variable coordinates are in RED

Link	a_i	$lpha_i$	d_i	θ_i
1	a_1	0	0	θ_1
2	a_2	180	0	θ_{z}
3	0	0	d ₃	0
4	0	0	d_4	θ_4

TO REMEMBER

- *C*_{*i*} --> distance Zi and Zi-1 along xi
- $\boldsymbol{\alpha}_i$ -->angle Zi and Zi-1 around xi
- d_i --> distance Xi and Xi-1 along Zi-1
- $heta_i$ --> angle Xi and Xi-1 around Zi-1

EXAMPLE 10: SCARA Manipulator

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} c_{2} & s_{2} & 0 & a_{2}c_{2} \\ s_{2} & -c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} c_{4} & -s_{4} & 0 & 0 \\ s_{4} & c_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The vector \boldsymbol{x}_e is defined in the space in which the manipulator task is specified; hence, this space is typically called *operational space*.

joint space (configuration space) denotes the space in which the $(n \times 1)$ vector of joint variables $[q_1]$

$$\boldsymbol{q} = \begin{bmatrix} 1 & & \\ \vdots & \\ q_n \end{bmatrix}$$

Joint Space and Operational Space: Example

$$\begin{aligned} T_{3}^{0}(q) &= A_{1}^{0}A_{2}^{1}A_{3}^{2} = \begin{bmatrix} c_{123} & -s_{123} & 0\\ s_{123} & c_{123} & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} + a_{3}c_{123}\\ a_{1}s_{1} + a_{2}s_{12} + a_{3}s_{123}\\ 0\\ 1 \end{bmatrix} \\ x_{e} &= \begin{bmatrix} p_{x}\\ p_{y}\\ \phi \end{bmatrix} = k(q) = \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} + a_{3}c_{123}\\ a_{1}s_{1} + a_{2}s_{12} + a_{3}s_{123}\\ \vartheta_{1} + \vartheta_{2} + \vartheta_{3} \end{bmatrix} \end{aligned}$$

Kinematic Redundancy (n > m)

A manipulator is termed *kinematically redundant* when it has a number of DOFs which is greater than the number of variables that are necessary to describe a task.

For an *n*-DOF manipulator, the reachable workspace is the geometric locus of the points that can be achieved by considering the direct kinematics equation for the sole position part

Kinematic Redundancy

a manipulator is intrinsically redundant when the dimension of the operational space is smaller than the dimension of the joint space (m < n).

Example of kinematic redundancy

Thank you for your Attention!!!

Any Questions?

