Robotics 1

Homogeneous Transformation Denavit \& Hartenberg Notation

Robotic manipulation implies multiple actions:

- Moving tools
-Picking objects
-Assembling parts

We must relate the kinematics of the object to be manipulated with the one of the robotic manipulator.

Both the robot and the object must have Reference Frames

Coordinated
Reference frames

- the robot
- the object

Finding the
Transformations among the Reference frames

Writing the orthonormal base of the reference frame \{EE\} in terms of the coordinates of the the $\{\mathrm{A}\}$ frame, we obtain the following

$$
\begin{aligned}
& \text { Rotation Matrix: } \\
& { }_{E E}^{A} R=\left[{ }^{A} X_{E E},{ }^{A} Y_{E E},{ }^{A} Z_{E E}\right]=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
\end{aligned}
$$

The set of the three vectors specifes the orientation of \{EE\} respect to \{A\}.

We can express also the components $r_{i j}$ as product of unit vectors of the orthonormal bases of $\{A\}$ and $\{E E\}$.

We can express also the components $r_{i j}$ as product of unit vectors of the orthonormal bases of $\{A\}$ and $\{E E\}$.

Property of the rotation matrix

$$
{ }_{E E}^{A} R=\left[{ }^{A} X_{E E},{ }^{A} Y_{E E},{ }^{A} Z_{E E}\right]=\left[\begin{array}{c}
{ }^{E E} X_{A}{ }^{T} \\
{ }^{E E} Y_{A}{ }^{T} \\
{ }^{E E} Z_{A}{ }^{T}
\end{array}\right]={ }_{A}^{E E} R^{T}
$$

Hence is possible to express the rotation of the frame $\{\mathrm{A}\}$ respect to the frame $\{E E\}$ using the transpose of the matrix:

$$
{ }_{A}^{E E} R={ }_{E E}^{A} R^{T}
$$

The frame $\{\mathbf{E E}\}$ is not only rotated respect to $\{\mathbf{A}\}$ but also translated.
In robotics a Frame is an entity described by 4 vectors:
-3 vectors defining the rotation matrix $\rightarrow{ }_{E E}^{A} R$
-1 vector defining the translation $\rightarrow{ }^{A} P_{E E}$

Evaluating the translation

${ }^{A} P_{E E}$ is the projection of the position of \{EE $\}$ into the unit vectors of the frame $\{\mathbf{A}\}$.

$$
{ }^{A} P_{E E}=\left[\begin{array}{c}
P_{E E} \cdot X_{A} \\
P_{E E} \cdot Y_{A} \\
P_{E E} \cdot Z_{A}
\end{array}\right]
$$

Base + end-effector + object

General case when we know the position of an object \{O\} in a frame \{EE\} and we want to know its position respect to the frame \{A\}
$\cdot\{E E\}$ is translated respect to $\{A\} \rightarrow \quad{ }^{A} P_{E E}$
$\cdot\{E E\}$ is rotated respect to $\{A\} \rightarrow \quad{ }_{E E} \rightarrow$
$\cdot\{O\}$ is represented in $\{E E\}$ by $\rightarrow \quad{ }^{E E} P_{O}$
$\cdot\{O\}$ must be known also respect to $\{A\} \rightarrow \quad{ }^{A} P_{O}$

${ }^{E E} P_{O}$ from $\{E E\}$ must be expressed in a frame of the same orientation of $\{\mathrm{A}\}$
We account of the translation between the origin of $\{E E\}$ and $\{\mathrm{A}\}$

$$
\begin{gathered}
{ }^{A} P_{O}={ }_{E E}^{A} R \cdot{ }^{E E} P_{O}+{ }^{A} P_{E E} \\
{ }^{A} P_{O}={ }_{E E}^{A} T \cdot{ }^{E E} P_{O} \quad \begin{array}{c}
\text { A more elegant form using the } \\
\text { transformation matrix: } \\
{ }_{E E}^{A}
\end{array} \\
{ }_{E E}^{A} T=\left[\begin{array}{cc}
{ }_{E E}^{A} R & { }^{A} P_{E E} \\
000 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 \times 3 & 3 \times 1 \\
1 \times 3 & 1 \times 1
\end{array}\right]=[4 \times 4]
\end{gathered}
$$

This is called Homogeneous Transformation and it will be useful when considering multiple frames of the robot and mapping the positions to arrive at the formulation of the kinematic problems

HOMOGENEUOS TRANSFORMATIONS

$$
{ }_{E E}^{A} T=\left[\begin{array}{cc}
{ }_{E E}^{A} R & { }^{A} P_{E E} \\
000 & 1
\end{array}\right]
$$

Homogeneous transformations

Summary

Properties of T matrix

- describes the relation between reference frames (relative pose $=$ position \& orientation)
- transforms the representation of a position vector (applied vector starting from the origin of the frame) from a given frame to another frame
- it is a roto-translation operator on vectors in the three-dimensional space
- it is always invertible $\left({ }^{A} T_{B}\right)^{-1}={ }^{B} T_{A}$
- can be composed, i.e., ${ }^{A} T_{C}={ }^{A} T_{B}{ }^{B} T_{C} \leftarrow$ note: it does

Knowing the geometrical features of a manipulator and associating to each link a reference frame, we are able to use homogenous transformations among the links and formulate the Kinematics

Robot kinematics using homogeneous transformations

Considering the four frames, arbitrary chosen on the four links, it is possible to write down the matrixes of the single homogeneous transformations.

$$
\begin{aligned}
& { }^{0} T_{1}=\operatorname{Rot}\left(z, q_{1}\right) \operatorname{Trasl}\left(z, L_{1}\right) ; \\
& { }^{1} T_{2}=\operatorname{Trasl}\left(x, L_{2}\right) \operatorname{Rot}\left(y, q_{2}\right) ; \\
& { }^{2} T_{3}=\operatorname{Trasl}\left(z, L_{3}\right) ;
\end{aligned}
$$

Multiplication among the transformation leads to the transformation between the BASE $\{0\}$ and the END-EFFECTOR $\{3\}$ expressed in function of the configuration space variables (\boldsymbol{q}_{1} and \boldsymbol{q}_{2})

$$
{ }^{0} T_{3}={ }^{0} T_{1}^{1} T_{2}^{2} T_{3}=\left[\begin{array}{ccc|c}
C_{1} C_{2} & -S_{1} & C_{1} S_{2} & L_{3} S_{2} C_{1}+L_{2} C_{1} \\
S_{1} C_{2} & C_{1} & S_{1} S_{2} & L_{3} S_{2} S_{1}+L_{2} S_{1} \\
-S_{2} & 0 & C_{2} & L_{3} C_{2}+L_{1} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

Abbreviations: $\mathrm{C}_{\mathrm{i}}=\cos \left(\mathrm{q}_{\mathrm{i}}\right), \mathrm{C}_{\mathrm{i}}=\sin \left(\mathrm{q}_{\mathrm{i}}\right)$

ROBOT KINEMATICS USING HOMOGENEOUS TRANSFORMATIONS

The obtained transformation is the forward kinematics of the manipulator.

$$
\left(x_{1}, x_{2}, x_{3} \ldots x_{m}\right)=F\left(q_{1}, q_{2}, q_{3} \ldots . q_{n}\right)
$$

$$
{ }^{0} T_{3}={ }^{0} T_{1}^{1} T_{2}^{2} T_{3}=\left[\begin{array}{ccc|c}
C_{1} C_{2} & -S_{1} & C_{1} S_{2} & L_{3} S_{2} C_{1}+L_{2} C_{1} \\
S_{1} C_{2} & C_{1} & S_{1} S_{2} & L_{3} S_{2} S_{1}+L_{2} S_{1} \\
-S_{2} & 0 & C_{2} & L_{3} C_{2}+L_{1} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

ROBOT KINEMATICS USING HOMOGENEOUS TRANSFORMATIONS

Coordinates of the end-effector respect to the base:

$$
\begin{aligned}
& x=L_{3} \sin \vartheta_{2} \cos \vartheta_{1}+L_{2} \cos \vartheta_{1} \\
& y=L_{3} \sin \vartheta_{2} \sin \vartheta_{1}+L_{2} \sin \vartheta_{1} \\
& z=L_{3} \cos \vartheta_{2}+L_{1}
\end{aligned}
$$

Denavit-Hartenberg Convention

A method is to be derived to define the relative position and orientation of two consecutive links;
the problem is that to determine two frames attached to the two links and compute the coordinate transformations between them.

the forward kinematics problem can be addressed using a more systematic method by the Denavit-Hartenberg convention.

In D-H convention each link has a reference frame opportunely placed and with the orthonormal axes opportunely directed

In D-H convention each homogeneous transformation between consecutive links is thought as Four consecutive transformations (link iin link i-1 coordinates)

THE DENAVIT-HARTENBERG CONVENTION

In D-H convention there are important 4 quantities:

1. Link length a_{i}
2. Link twist α_{i}
3. Link offset d_{i}
4. Joint angle θ_{i}

These quantities are always evaluated from the link \boldsymbol{i} respect to the link i-1

THE DENAVIT-HARTENBERG CONVENTION

Link length a_{i}

It is the distance between the axes Z_{i} and Z_{i-1} measured along \boldsymbol{x}

THE DENAVIT-HARTENBERG CONVENTION

Link twist α_{i}

It is the angle between the axes Z_{i} and Z_{i-1} measured around $\boldsymbol{x i}$

THE DENAVIT-HARTENBERG CONVENTION

Link offset d_{i}

It is the distance between the axes $\boldsymbol{X}_{\boldsymbol{i}}$ and $\boldsymbol{X}_{\boldsymbol{i} \boldsymbol{- 1}}$ measured along $\mathrm{Zi}_{\mathrm{i}} \mathbf{1}$

THE DENAVIT-HARTENBERG CONVENTION

Joint angle θ_{i}
It is the angle between the axes X_{i} and X_{i-1} measured around Z_{i-1}

The idea is composing a TABLE which will allow to find the homogeneous transformation among each pair of link

In D-H convention there are important 4 quantities:

1. Link length a_{i}
2. Link twist α_{i}
3. Link offset d_{i}
4. Joint angle θ_{i}

D-H Table convention

Create a table of link parameters $a_{i}, d_{i}, \alpha_{i}, \theta_{i}$.
$a_{i}=$ distance along x_{i} from o_{i} to the intersection of the x_{i} and z_{i-1} axes.
$d_{i}=$ distance along z_{i-1} from o_{i-1} to the intersection of the x_{i} and z_{i-1} axes. d_{i} is variable if joint i is prismatic.
$\alpha_{i}=$ the angle between z_{i-1} and z_{i} measured about x_{i}
$\theta_{i}=$ the angle between x_{i-1} and x_{i} measured about $z_{i-1} . \theta_{i}$ is variable if joint i is revolute.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1				
2				
\dot{n}				

Example 1: Planar Elbow Manipulator

THE DENAVIT-HARTENBERG CONVENTION

First row between link 0 and 1

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Link length a_{1}
It the distance between the axes Z_{1} and Z_{0} measured along x_{1}

THE DENAVIT-HARTENBERG CONVENTION

First row between link 0 and 1

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Link twist α_{1}

It the angle between the axes Z_{1} and Z_{0} measured around X1

THE DENAVIT-HARTENBERG CONVENTION

First row between link 0 and 1

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Link offset d_{i}

It the distance between the axes \boldsymbol{X}_{1} and X_{0} measured along Zo

THE DENAVIT-HARTENBERG CONVENTION

First row between link 0 and 1

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Joint angle θ_{i}

It the angles between the axes \boldsymbol{X}_{1} and X_{0} measured around Zo

THE DENAVIT-HARTENBERG CONVENTION

second row between link 1 and 2

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Link length a_{1}
It the distance between the axes Z_{2} and Z_{1} measured along x2

THE DENAVIT-HARTENBERG CONVENTION

second row between link 1 and 2

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Link twist α_{1}

It the angle between the axes \mathbf{Z}_{2} and \mathbf{Z}_{1} measured around X2

THE DENAVIT-HARTENBERG CONVENTION

second row between link 1 and 2

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Link offset d_{i}

It the distance between the axes $\boldsymbol{X}_{\mathbf{2}}$ and $\boldsymbol{X}_{\mathbf{1}}$ measured along Z_{1}

THE DENAVIT-HARTENBERG CONVENTION

second row between link 1 and 2

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Joint angle θ_{i}

It the angles between the axes $\boldsymbol{X}_{\mathbf{2}}$ and $\boldsymbol{X}_{\mathbf{1}}$ measured around Z_{1}

THE DENAVIT-HARTENBERG CONVENTION

We have now two homogeneous transformation

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

$$
\begin{aligned}
&{ }^{0} T_{1}=A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { Rotation around } \mathbf{Z}_{0} \text { and translation of } \mathbf{a}_{1} \\
&{ }^{1} T_{2}=A_{2}=\left[\begin{array}{cccc}
c_{2} & -s_{2} & 0 & a_{2} c_{2} \\
s_{2} & c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { Rotation around } \mathbf{Z}_{1} \text { and translation of } \mathbf{a}_{2}
\end{aligned}
$$

Finally the forward kinematics relating the base to the end effector

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ_{1}^{*}
2	a_{2}	0	0	θ_{2}^{*}

Forward Kinematics is provided by the transformations:

$$
{ }^{0} T_{2}=A_{1} A_{2}=\left[\begin{array}{ccc}
c_{12} & -s_{12} & 0 \\
s_{12} & c_{12} & 0 \\
0 & 0 & 1 \\
\hdashline 0 & 0 & 0
\end{array}\right]
$$

Rotation of the end-effector around the axis $z 0$

Coordinates of the end-effector respect to the base:

$$
\begin{aligned}
& x=a_{1} c_{1}+a_{2} c_{12} \\
& y=a_{1} s_{1}+a_{2} s_{12}
\end{aligned}
$$

Kinematics of Typical Manipulator Structures (D-H)

Example 2: three link planar

DH parameters for the three-link planar arm

Link	a_{i}	α_{i}	d_{i}	ϑ_{i}
1	a_{1}	0	0	ϑ_{1}
2	a_{2}	0	0	ϑ_{2}
3	a_{3}	0	0	ϑ_{3}

To REMEMBER
$\boldsymbol{a}_{\boldsymbol{i}}$--> distance Zi and $\mathrm{Zi}-1$ along xi
$\boldsymbol{\alpha}_{i}$-->angle Zi and Zi-1 around xi
$\boldsymbol{d}_{\boldsymbol{i}}$-->distance Xi and Xi-1 along Zi-1
$\boldsymbol{\theta}_{\boldsymbol{i}}$--> angle Xi and Xi-1 around $\mathrm{Zi}-1$

$$
\boldsymbol{A}_{i}^{i-1}\left(\vartheta_{i}\right)=\left[\begin{array}{cccc}
c_{i} & -s_{i} & 0 & a_{i} c_{i} \\
s_{i} & c_{i} & 0 & a_{i} s_{i} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Kinematics of Typical Manipulator Structures (D-H)

Rotation of the end-effector around the axis zo

$$
\begin{gathered}
\boldsymbol{A}_{i}^{i-1}\left(\vartheta_{i}\right)=\left[\begin{array}{cccc}
c_{i} & -s_{i} & 0 & a_{i} c_{i} \\
s_{i} & c_{i} & 0 & a_{i} s_{i} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad i=1,2,3 \\
\boldsymbol{T}_{3}^{0}(\boldsymbol{q})=\boldsymbol{A}_{1}^{0} \boldsymbol{A}_{2}^{1} \boldsymbol{A}_{3}^{2}=\left[\begin{array}{cc:c}
c_{123} & -s_{123} & 0 \\
s_{123} & c_{123} & 0 \\
0 & 0 & 1
\end{array}\right] \\
\hdashline 0 \\
\hdashline a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123}+a_{2} s_{12}+a_{3} s_{123} \\
a_{1} \\
\boldsymbol{q}=\left[\begin{array}{lll}
\vartheta_{1} & \vartheta_{2} & \vartheta_{3}
\end{array}\right]^{T}
\end{gathered}
$$

Coordinates of the end-effector respect to the base

Video D-H: how to chose references

https://www.youtube.com/watch?v=rA9tm0gTIn8

Kinematics of Typical Manipulator Structures (D-H)

Example 3: antropomorphic Arm

DH parameters for the anthropomorphic arm

Link	a_{i}	α_{i}	d_{i}	ϑ_{i}
1	0	$\pi / 2$	0	ϑ_{1}
2	a_{2}	0	0	ϑ_{2}
3	a_{3}	0	0	ϑ_{3}

$$
\begin{aligned}
& \text { To REMEMBER } \\
& \boldsymbol{a}_{\boldsymbol{i}} \text {--> distance } \mathrm{Zi} \text { and } \mathrm{Zi}-1 \text { along xi } \\
& \boldsymbol{\alpha}_{\boldsymbol{i}} \text {--> angle } \mathrm{Zi} \text { and } \mathrm{Zi}-1 \text { around xi } \\
& \boldsymbol{d}_{\boldsymbol{i}} \text {-->distance Xi and Xi-1 along Zi-1 } \\
& \boldsymbol{\theta}_{\boldsymbol{i}} \text {--> angle Xi and Xi-1 around Zi-1 }
\end{aligned}
$$

Kinematics of Typical Manipulator Structures (D-H)

Example 3: antropomorphic Arm

$\boldsymbol{A}_{1}^{0}\left(\vartheta_{1}\right)=\left[\begin{array}{cccc}c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\boldsymbol{A}_{i}^{i-1}\left(\vartheta_{i}\right)=\left[\begin{array}{cccc}c_{i} & -s_{i} & 0 & a_{i} c_{i} \\ s_{i} & c_{i} & 0 & a_{i} s_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \quad i=2,3$.

$$
\boldsymbol{T}_{3}^{0}(\boldsymbol{q})=\boldsymbol{A}_{1}^{0} \boldsymbol{A}_{2}^{1} \boldsymbol{A}_{3}^{2}=\left[\begin{array}{cccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} & c_{1}\left(a_{2} c_{2}+a_{3} c_{23}\right) \\
s_{1} c_{23} & -s_{1} s_{23} & -c_{1} & s_{1}\left(a_{2} c_{2}+a_{3} c_{23}\right) \\
s_{23} & c_{23} & 0 & a_{2} s_{2}+a_{3} s_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

THE DENAVIT-HARTENBERG CONVENTION

Example 4: Three-Link Cylindrical Robot

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	0	d_{1}	θ_{1}^{*}
2	0	-90	d_{2}^{*}	0
3	0	0	d_{3}^{*}	0

* variable

$$
{ }^{0} T_{1}=A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
{ }^{1} T_{2}=A_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
{ }^{2} T_{3}=A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$\boldsymbol{a}_{\boldsymbol{i}}$--> distance Zi and $\mathrm{Zi}-1$ along xi
$\boldsymbol{\alpha}_{i}$-->angle Zi and Zi-1 around xi
$\boldsymbol{d}_{\boldsymbol{i}}$-->distance Xi and Xi-1 along Zi-1
$\boldsymbol{\theta}_{\boldsymbol{i}}$--> angle Xi and Xi-1 around Zi-1

THE DENAVIT-HARTENBERG CONVENTION

Example 4: Three-Link Cylindrical Robot

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	0	d_{1}	θ_{1}^{*}
2	0	-90	d_{2}^{*}	0
3	0	0	d_{3}^{*}	0
variable				

Forward Kinematics is provided by the transformations:

$$
T_{3}^{0}=A_{1} A_{2} A_{3}=\left[\begin{array}{ccc:c}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation of the end-effector
around the frame $\mathbf{x 0} \mathbf{y 0} \mathbf{z 0}$
(which is a rotation around zO)

Coordinates of the end-effector respect to the base

Recalling Rotation matrix

$$
\boldsymbol{R}_{z}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\boldsymbol{R}_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \quad \boldsymbol{R}_{x}(\gamma)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right]
$$

THE DENAVIT-HARTENBERG CONVENTION

Example 5: Spherical Wrist

Assume in this case the base as the link 3 is not visible, and compute normally D-H.

THE DENAVIT-HARTENBERG CONVENTION

Example 5: Spherical Wrist

$$
\begin{aligned}
& T_{6}^{3}=A_{4} A_{5} A_{6}=\left[\begin{array}{cc}
R_{6}^{3} & o_{6}^{3} \\
0 & 1
\end{array}\right] \quad \begin{array}{l}
\text { Coordinates of the end-effector res } \\
\text { base (in this case is link } 3 \text { the base v } \\
\text { visible) }
\end{array} \\
& =\left[\begin{array}{ccc:c}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{4} s_{5} d_{6} \\
\hdashline 0 & 0 & c_{5} & c_{5} d_{6} \\
\text { end-effector } & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 6: Cylindrical Manipulator + Spherical Wrist (Example 4-5 assembled)

The Forward Kinematics of the whole device is obtained by multiplying the transformation obtained in the previous examples:

$$
T_{6}^{0}=T_{3}^{0} T_{6}^{3}
$$

Example 2

$$
T_{6}^{0}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} c_{6} & c_{5} & c_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

THE DENAVIT-HARTENBERG CONVENTION

Example 6: Cylindrical Manipulator with Spherical Wrist (Example 2-3 assembled)

$$
T_{6}^{0}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc:c}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} c_{6} & c_{5} & c_{5} d_{6} \\
\hdashline 0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation of the end-effector
respect the frame xO yO zO

$$
\begin{aligned}
& r_{11}=c_{1} c_{4} c_{5} c_{6}-c_{1} s_{4} s_{6}+s_{1} s_{5} c_{6} \\
& r_{21}=s_{1} c_{4} c_{5} c_{6}-s_{1} s_{4} s_{6}-c_{1} s_{5} c_{6} \\
& r_{31}=-s_{4} c_{5} c_{6}-c_{4} s_{6} \\
& r_{12}=-c_{1} c_{4} c_{5} s_{6}-c_{1} s_{4} c_{6}-s_{1} s_{5} c_{6} \\
& r_{22}=-s_{1} c_{4} c_{5} s_{6}-s_{1} s_{4} s_{6}+c_{1} s_{5} c_{6} \\
& r_{32}=s_{4} c_{5} c_{6}-c_{4} c_{6} \\
& r_{13}=c_{1} c_{4} s_{5}-s_{1} c_{5} \\
& r_{23}=s_{1} c_{4} s_{5}+c_{1} c_{5} \\
& r_{33}=-s_{4} s_{5}
\end{aligned}
$$

Coordinates of the end-effector respect to the base

$$
\begin{aligned}
d_{x} & =c_{1} c_{4} s_{5} d_{6}-s_{1} c_{5} d_{6}-s_{1} d_{3} \\
d_{y} & =s_{1} c_{4} s_{5} d_{6}+c_{1} c_{5} d_{6}+c_{1} d_{3} \\
d_{z} & =-s_{4} s_{5} d_{6}+d_{1}+d_{2}
\end{aligned}
$$

Kinematics of Typical Manipulator Structures (D-H)

Example 7: spherical Arm

Recalling Rotation matrix

$$
\boldsymbol{R}_{z}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\boldsymbol{R}_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \quad \boldsymbol{R}_{x}(\gamma)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma
\end{array}\right]
$$

Kinematics of Typical Manipulator Structures (D-H)

Example 7: spherical Arm

$$
\begin{gathered}
\boldsymbol{A}_{1}^{0}\left(\vartheta_{1}\right)=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \boldsymbol{A}_{2}^{1}\left(\vartheta_{2}\right)=\left[\begin{array}{cccc}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
\boldsymbol{A}_{3}^{2}\left(d_{3}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

$$
\boldsymbol{T}_{3}^{0}(\boldsymbol{q})=\boldsymbol{A}_{1}^{0} \boldsymbol{A}_{2}^{1} \boldsymbol{A}_{3}^{2}=\left[\begin{array}{cccc}
c_{1} c_{2} & -s_{1} & c_{1} s_{2} & c_{1} s_{2} d_{3}-s_{1} d_{2} \\
s_{1} c_{2} & c_{1} & s_{1} s_{2} & s_{1} s_{2} d_{3}+c_{1} d_{2} \\
-s_{2} & 0 & c_{2} & c_{2} d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Kinematics of Typical Manipulator Structures (D-H)

Kinematics of Typical Manipulator Structures (D-H)

Recall Example 3: spherical wrist

To REMEMBER
$\boldsymbol{a}_{\boldsymbol{i}}$--> distance Zi and $\mathrm{Zi}-1$ along xi
$\boldsymbol{\alpha}_{\boldsymbol{i}}$-->angle Zi and $\mathrm{Zi}-1$ around xi
$\boldsymbol{d}_{\boldsymbol{i}}$-->distance Xi and $\mathrm{Xi}-1$ along Zi-1
$\boldsymbol{\theta}_{\boldsymbol{i}}$--> angle Xi and Xi-1 around $\mathrm{Zi}-1$

DH parameters for the spherical wrist

Link	a_{i}	α_{i}	d_{i}	ϑ_{i}
4	0	$-\pi / 2$	0	ϑ_{4}
5	0	$\pi / 2$	0	ϑ_{5}
6	0	0	d_{6}	ϑ_{6}

Kinematics of Typical Manipulator Structures (D-H)

Recall Example 3: spherical wrist

Example 8: Stanford Manipulator

$$
\boldsymbol{T}_{6}^{3}(\boldsymbol{q})=\boldsymbol{A}_{4}^{3} \boldsymbol{A}_{5}^{4} \boldsymbol{A}_{6}^{5}=\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
T_{6}^{0}=T_{3}^{0} T_{6}^{3}
$$

$$
\boldsymbol{T}_{3}^{0}(\boldsymbol{q})=\boldsymbol{A}_{1}^{0} \boldsymbol{A}_{2}^{1} \boldsymbol{A}_{3}^{2}=\left[\begin{array}{cccc}
c_{1} c_{2} & -s_{1} & c_{1} s_{2} & c_{1} s_{2} d_{3}-s_{1} d_{2} \\
s_{1} c_{2} & c_{1} & s_{1} s_{2} & s_{1} s_{2} d_{3}+c_{1} d_{2} \\
-s_{2} & 0 & c_{2} & c_{2} d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 9: Stanford Manipulator (entire structure)

This manipulator is an example of a spherical (RRP) manipulator with a spherical wrist. This manipulator has an offset in the shoulder joint that slightly complicates both the forward and inverse kinematics problems.

We first establish the joint coordinate frames using the D-H convention as shown below.

Variable coordinates are in RED

Link	d_{i}	a_{i}	α_{i}	θ_{i}
1	0	0	-90	$\boldsymbol{\theta}_{\mathbf{1}}$
2	d_{2}	0	+90	$\boldsymbol{\theta}_{\mathbf{2}}$
3	$\boldsymbol{d}_{\mathbf{3}}$	0	0	0
4	0	0	-90	$\boldsymbol{\theta}_{\mathbf{4}}$
5	0	0	+90	$\boldsymbol{\theta}_{\mathbf{5}}$
6	d_{6}	0	0	$\boldsymbol{\theta}_{\mathbf{6}}$

To REMEMBER
$\boldsymbol{a}_{\boldsymbol{i}}$--> distance Zi and Zi-1 along xi
$\boldsymbol{\alpha}_{\boldsymbol{i}}$-->
$\boldsymbol{d}_{\boldsymbol{i}}$-->distangle Zi and $\mathrm{Zi}-1$ around xi
$\boldsymbol{\theta}_{\boldsymbol{i}}$--> and Xi-1 along Zi-1

Example 9: Stanford Manipulator

It is straightforward to compute the matrices A_{i} as

Link	d_{i}	a_{i}	α_{i}	θ_{i}
1	0	0	-90	$\boldsymbol{\theta}_{\mathbf{1}}$
2	d_{2}	0	+90	$\boldsymbol{\theta}_{\mathbf{2}}$
3	$\boldsymbol{d}_{\mathbf{3}}$	0	0	0
4	0	0	-90	$\boldsymbol{\theta}_{\mathbf{4}}$
5	0	0	+90	$\boldsymbol{\theta}_{\mathbf{5}}$
6	d_{6}	0	0	$\boldsymbol{\theta}_{\mathbf{6}}$

$$
\begin{array}{lll}
A_{1}=\left[\begin{array}{rrrr}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & A_{4}=\left[\begin{array}{rrrr}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{2}=\left[\begin{array}{rrrr}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] & A_{5}=\left[\begin{array}{rrrr}
c_{5} & 0 & s_{5} & 0 \\
s_{5} & 0 & -c_{5} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{3}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] & A_{6}=\left[\begin{array}{rrrr}
c_{6} & -s_{6} & 0 & 0 \\
s_{6} & c_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

Example 9: Stanford Manipulator

T_{6}^{0} is then given as $T_{6}^{0}=A_{1} \cdots A_{6}$

$$
=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & d_{x} \\
r_{21} & r_{22} & r_{23} & d_{y} \\
r_{31} & r_{32} & r_{33} & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation of the end-effector respect the frame $\mathbf{x 0} \mathbf{y 0} \mathbf{z O}$

$$
\begin{aligned}
r_{11} & =c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-d_{2}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{21} & =s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
r_{31} & =-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} \\
r_{12} & =c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{22} & =-s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) \\
r_{32} & =s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} \\
r_{13} & =c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} \\
r_{23} & =s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} \\
r_{33} & =-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{aligned} \begin{aligned}
d_{x}=c_{1} s_{2} d_{3}-s_{1} d_{2}++d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
d_{y}=s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
d_{z}=c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right) . \\
\hline
\end{aligned}
$$

THE DENAVIT-HARTENBERG CONVENTION

EXAMPLE 10: SCARA Manipulator

As another example of the general procedure, consider the SCARA manipulator.
This manipulator, consists of an RRP arm and a one degree-of-freedom wrist, whose motion is a roll about the vertical axis.

EXAMPLE 10: SCARA Manipulator

Variable coordinates are in RED

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	$\boldsymbol{\theta}_{1}$
2	a_{2}	180	0	$\boldsymbol{\theta}_{2}$
3	0	0	\boldsymbol{d}_{3}	0
4	0	0	d_{4}	$\boldsymbol{\theta}_{4}$

To REMEMBER
$\boldsymbol{a}_{\boldsymbol{i}}$--> distance Zi and $\mathrm{Zi}-1$ along xi
$\boldsymbol{\alpha}_{i}$-->angle Zi and $\mathrm{Zi}-1$ around xi
$\boldsymbol{d}_{\boldsymbol{i}}$-->distance Xi and Xi-1 along Zi-1
$\boldsymbol{\theta}_{\boldsymbol{i}}$--> angle Xi and $\mathrm{Xi}-1$ around $\mathrm{Zi}-1$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{2}=\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

EXAMPLE 10: SCARA Manipulator

$$
A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
A_{4}=\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The forward kinematic equations are therefore given by

$$
T_{4}^{0}=A_{1} \cdots A_{4}=\left[\begin{array}{cccc}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & -d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

UNIVERSITÄT
HEIDELBERG
ZUKUNFT
ZUKUNFT
SEIT 1386

Joint Space and Operational Space (kinematic redundancy)

$$
x_{e}=\left[\begin{array}{l}
p_{e} \\
\phi_{e}
\end{array}\right]
$$

where \boldsymbol{p}_{e} describes the end-effector position and $\boldsymbol{\phi}_{e}$ its orientation.

The vector \boldsymbol{x}_{e} is defined in the space in which the manipulator task is specified; hence, this space is typically called operational space.
joint space (configuration space) denotes the space in which the $(n \times 1)$ vector of joint variables

$$
\boldsymbol{q}=\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right]
$$

Joint Space and Operational Space: Example

$$
\begin{aligned}
& \left.\boldsymbol{T}_{3}^{0}(\boldsymbol{q})=\boldsymbol{A}_{1}^{0} \boldsymbol{A}_{2}^{1} \boldsymbol{A}_{3}^{2}=\left[\begin{array}{cc:c}
c_{123} & -s_{123} & 0 \\
s_{123} & c_{123} & 0 \\
0 & 0 & 1
\end{array}\right] \begin{array}{c}
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123} \\
\hdashline 0
\end{array} 0 \begin{array}{c}
0 \\
a_{0}
\end{array}\right] \\
& \boldsymbol{x}_{e}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
\phi
\end{array}\right]=\boldsymbol{k}(\boldsymbol{q})=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123} \\
\vartheta_{1}+\vartheta_{2}+\vartheta_{3}
\end{array}\right]
\end{aligned}
$$

Kinematic Redundancy ($n>m$)

A manipulator is termed kinematically redundant when it has a number of DOFs which is greater than the number of variables that are necessary to describe a task.

For an n-DOF manipulator, the reachable workspace is the geometric locus of the points that can be achieved by considering the direct kinematics equation for the sole position part

Kinematic Redundancy

a manipulator is intrinsically redundant when the dimension of the operational space is smaller than the dimension of the joint space ($m<n$).

$$
(m=n) .
$$

Example of kinematic redundancy

The end!

Thank you for your Attention!!! Any Questions?

