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Robot Kinematics

First problem in programming robots is to describe the
position of the «end-effector» in relation to a fixed frame
usually called «base»

o7
» y END-EFFECTOR

VP L x* OBJECT
ROBOT BASE
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JOINT 1
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END
EFFECTOR

Robot joints are equipped with sensors (encoders or
resolvers) feeding back their rotation to the central CPU
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kinematics

d
=
d4 F= (g, l)
[, 0, ... ]
TASK SPACE
(workspace)
[ql’ q2 ) q3 """ qn]
CONFIGURATION How to relate the two SPACES?

SPACE

(joints space)

[ql’qZ’qS """ rm]
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DIRECT

KINEMATIC;l

TASK SPACE

Qn

CONFIGURATION

< INVERSE

KINEMATICS

Q:[ql’qw% ----- qn]

*The dimension of the confiquration space must be larger or equal to the dimension
of the task space (n > m)

*To ensure the existence of Kinematics solutions.
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The process of finding the joint angles that realizes a given
(desired) position/orientation of the end-effector is
known as inverse kinematics.

(ql’qZ’qB """ 1Qn):(-:"(r1’r ’r3 """ rm)

—_—
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Inverse Kinematics

The process of finding the joint angles that realizes a given
position/orientation of the end-effector is known as
inverse kinematics.

(q11q2’q3 """ ’Qn):G(rlirZ’rB """ r.m)

"'frm)




Inverse kinematics
what are we looking for?

————
(-50.19°

‘ {hl

Direct kinematics > l -

W N -
Prey = | N
e :

| 0°

b/

=

direct kinematics is always unique;
how about inverse kinematics for this 6R robot?



RS Example: inverse Kinematics

TASK:
to place the gripper at a desired position:

Pdes -— (mdes:ydes)

Finding the appropriate joint angles that achieve this position it constitutes
the inverse kinematics problem: . .
q* = (67,65)

Unknown - (6%, 63)



vessi Example: inverse Kinematics

The forward kinematic provided:

{ Tdes = d1cos(67)+ dacos(0F + 63)
Ydes = disin(0%) 4 dasin(0;7 + 63)

Squaring both sides of equation and
summing them up:

i +ys., = di+di+2didy (cos(0})cos(0F + 6%) + sin(6%) sin(0t + 63))
= d? +d3 + 2d1ds cos(603).



1) e Example: inverse Kinematics

The forward kinematic provided:
i, +Yi, = d?+d2+ 2did;cos(63).

o m?les + yges o d% - d%
2d,ds

2 2 2 2

T3+ —d® —d

0% = + arccos des T Ydes ! 2
2dd>

There are two values of the angle. Why?
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Example: inverse Kinematics

(X ) Next, after some calculations, one can
des’ydes - : _
/ find the expression for the two angles:

m?les —I_ y(_zles o d]2. o d‘g )

* *
<\92 L =1 ar(:cos( 2d.d;

i 07 = arctan 2(Ydes, Tdes) — arctan 2(kz, k1),

where

ki :=dy +dycos(05) and ks := dysin(63).

Appendix for compete calculation.



http://www.hessmer.org/uploads/RobotArm/Inverse Kinematics for Robot Arm.pdf
http://www.hessmer.org/uploads/RobotArm/Inverse Kinematics for Robot Arm.pdf

EXAMPLE: INVERSE KINEMATICS
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R
X
Q.
)
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The above derivations raise the following remarks:
e |[nverse kinematics calculations are in general much more difficult than forward

kinematics calculations;
e While a configuration g always yields one forward kinematics solution p, a given

desired end-effector position p4., may correspond to zero, one, or multiple possible

IK solutions g*.



R Redundancy (definition)

K
T
? ZUKUNFT
i SEIT 1386

Redundancy arises when there are multiple Inverse
Kinematics solutions for a given desired task value.

s
X
Q
D
2]
o<
D
0
N—r

D

.
’f
-
-
’f
’f
-

Task Space Configuration Space

(67, 65)
(:EdeSJ ydeS) (GIT: 9’;)
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Inverse Kinematics Caveats

1. May or may not have a
solution e
2. Even if solution exists, may or = . ¢
may not be unique '
3. Because forward kinematics
is generally nonlinear,
solutions can be hard to
obtain even if they exist
Example: pretend you are a
PUMA arm — how many
solutions?
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Multiple solutions

g

Left Arm Elbow Up

.

Left Arm Elbow Down Right Arm Elbow Down
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s Inverse kinematics problem

= given a desired end-effector pose (position +

orientation), find the values of the joint variables
that will realize it”

= a synthesis problem, with input data in the form

R p} p
T=|t=0A(q) =r= { }= f.(q), or for any
{000 1 ) ¢ r other task vector
classical formulation: generalized formulation:

inverse kinematics for a given end-effector pose  inverse kinematics for a given value of task variables
= a typical nonlinear problem

= existence of a solution (workspace definition)

= uniqueness/multiplicity of solutions (r € R™, q € R")

= solution methods



Solvability and robot workspace

(for tasks related to a desired end-effector Cartesian pose)

primary workspace WS,: set of all positions p that can be
reached with at least one orientation (¢ or R)

= out of WS; there is no solution to the problem
= When p € WS;, there is a suitable ¢ (or R) for which a solution exists

secondary (or dexterous) workspace WS,: set of positions p
that can be reached with any orientation (among those
feasible for the robot direct kinematics)

= When p € WS,, there exists a solution for any feasible ¢ (or R)



Workspace of Fanuc R-2000i/165F

SEIT 1386

Area di lavoro section for a
Operating Space constant angle 6,

WS, cR3
(= WS, for spherical wrist
without joint limits)

2133

197

Side View

Top View
rotating the
base joint angle 6,

If you assume that the spherical wrist is with no rotational limits primary and secondary workspace are coincident, Because
for all the position that | reach | can assume any orientation.
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| Workspace of planar 2R arm

2 orientations 4]
if p e int(WS,) 2 1+
= WS,- dWS, “

. oWS,
outer and i_nner
| boundaries 1 orientation
[ | |f Il * |2
= WS; = {p e R% [Ijh| < [|p[|< I;+,}c R?
s WS, =0
| |f Il |2 ‘E

= WS, ={p e R% ||p||< 28} cR?
= WS, = {p = 0} (infinite number of feasible orientations at the origin)
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= E-E positioning (m=2) of a planar 2R robot arm
= 2 regular solutions in int(WS;)
= 1 solution on dWS;

. . singular solutions
= forl; =15: oo solutions in WS, } g

Workspace of planar 2R arm

2 orientations 4]
if p  int(WS,) < 1+l
= WSl- 8W51

WS,
outer and inner

boundaries 1 orientation

When we will study differential kinematics using the Jacobian matrix we will see that in Singular configuration the
jacobian becomes singular (determinant is zero).




Possible situations
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DIRECT

KIN EMATIC.S'

TASK SPACE

R m

= ifm=n
= 7 solutions
= a finite number of solutions (regular/generic case)

= degenerate” solutions: infinite or finite set, but anyway
different in number from the generic case (singularity) Q=19-92-95-4,]

0’

CONFIGURATION

INVERSE
KINEMATICS

= if m < n (robot is redundant for the kinematic task)
= A solutions
= "M solutions (regular/generic case)
= a finite or infinite number of singular solutions

In the case of the Kuka Light arm:
m=6
n=7

(x)n-m: Ool




) ow to compute the inverse kinematics?
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ANALYTICAL solution — NUMERICAL solution
(in closed form) \ (in iterative form)
= preferred, if it can be found™ = certainly needed if n>m (redundant
= use ad-hoc geometric inspection case), or at/close to singularities
= algebraic methods (solution of = slower, but easier to be set up
polynomial equations) = in its basic form, it uses the
= systematic ways for generating a (analytical) Jacobian matrix of the
reduced set of equations to be direct kinematics map
solved 1(q) = of. (q)
r q _ aq

= Newton method, Gradient method,
and so on... H
=

generalized formulation:
inverse kinematics for a given value of task variables

= f.(q), or for any
other task vector



Inverse Kinematics
Analytical Solution

the inverse problem of finding the joint variables in terms of the end-effector position
and orientation it is, in general, more difficult than the forward kinematics problem.

To do list

« we begin by formulating the general inverse kinematics problem.

« we describe the principle of kinematic decoupling and how it can be used to
simplify the inverse kinematics of most modern manipulators.

« Using kinematic decoupling, we can consider the position and orientation
problems independently.

« We describe a geometric approach for solving the positioning problem, while we
exploit the Euler angle parameterization to solve the orientation problem.
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|- The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given a 4 x 4 homoge-

neous transformation

B0l e sps)

H =13 {|€

with R € SO(3), find (one or all) solutions of the equation

T (q1.- ... g¢n) = H where  T%(qq,.... gn) = Ai(q1) - Anlgn).

to find the values for the joint variables ¢, .. .. Gn so that T%(qq..... (n) =

Here, H represents the desired position and orientation of the end-effector, and our task is

H.



p— Inverse Kinematics Problem
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The inverse kinematics problem consists of the determination of the joint variables
corresponding to a given end-effector position and orientation.

On the other hand. the inverse kinematics problem is
much more complex for the following reasons:

e The equations to solve are in general nonlinear, and thus it is not always
possible to find a closed-form solution.

o Multiple solutions may exist.

e Infinite solutions may exist, e.g., in the case of a kinematically redundant
manipulator.

e There might be no admissible solutions, in view of the manipulator kine-
matic structure.
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Three-link planar arm A

Find the joint variables 4., 9., J:corresponding to a
given end-effector position and orientation.

Remember the kinematic equation:

[ Dz | [ ai1c1 + a2c12 + ascias |
Te = | py | =k(q) = | a1s1 + a2s12 + azsio3
el i VU1 + Va2 + Vs

O =197 + Vo + Vs

Position of point P
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Solution of Three-link Planar Arm s 4

PWae = Pz — A3C4H = A1C1 T A2C12

(1)

PWy = Dy — A35¢ = (151 T (2512

- - 2 2 2 2 ‘
Squarlng and Summ|ng PW « + Pwy = @ -+ 15 + 2(},-1 (19C9

2 2 2 2
P W + P Wy — a3 — a5

2&1@2

Co =

L 2
Hence, the angle %.can be computed as 2 = =\ 1~ @ | Jy = Atan2(sz, ¢z).

Substituting 4:into the (1) yields an algebraic system of two equations in the two
unknowns s:and c., whose solution is

(a1 + asco)pwy — a2s2pw o

Py 2 T pl—"[-"t v, 1 = At #:1-112(51 . C1 ) . 1)0, = QO — '1')1 — '1')2 .
(a1 + aar’))pu T A252PWy
Cl =

Pive T Piy y
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) e Law of cosine explained

Articulated Configuration

C

a’ = b?+ c?—2bc cos (0)

Y

c’> = x* + y?> = a,*+a,*> —2a,a, cos (L — 6,)
c? = x? + y? = a,*+a,? +2a,a, cos (0,)

2 2 . .2
Tyt —af — o
costlh = = D.
: 2av1 9
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An alternative geometric solution technique is presented below.

The application of the cosine theorem to the triangle formed

by links a:, a:and the segment connecting points W and O
gives

2 2 2 2 ¢ (
Pw. t Pw, = ai + a3 — 2ajas cos (T — 13)

pg -+ pz —a? — a3
cos (rr — 9.) = —cos & Co = W Wy ! —.

2 (1109

elbow-up ¢, € (—7,0)
elbow-down ), € (0, 7).

/i

o = *£cos _1((.'12)

. SOlUtiOn Of Three-link Planar Arm

Three-link planar arm
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)z Solution of Three-link Planar Arm

To find ¥4 consider the angles o and [

a = Atan2(pwy, pwa )-

To compute (3, applying again the cosine theorem yields

2 2 _ .
Cp3 \/ PW + Pw y (11 -+ (1o Co

and resorting to the expression of ¢y given above leads to

2 > > _ 2
P T Pivy T a1 — 3

¢ 2 A2
N

1

h =ax 3

3 = cos

v, 3 = r._-*} — 1 — 0, 9.
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for 5 € (

e (0,

T

I

Solution of Spherical Wrist

), and

—,0)

vy = Atan2(a 3)
U5 = Atan2( (a3)?. af)

Ve = Atan2(s?, —n’ )

vy = Atan2(— a; —a?)

AtanZ( \/[ai)z

Ve = Atan2(—s>,n

 C4C5C6 — 5456 —C4C586 — S4C6 4S5
L S4C5C6 T C4S6  —S4C556 T C4C6  S4S5
—S5Cg 5556 Cs
_ 0 0 0
s 3 31
n T g i a‘:{?
3 3 3 3
R: = 1n> s’ «
6 Y Y Y
3 .3 3
| n, s, al

DH parameters for spherical wrist.

Link | a i ¥ ( :It t i
4 0 —-901| 0 | 65
5 1 0] 9 | 0|6
6 | 0] 0 |dg|b;
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Ye

Solution of Spherical manipulator

Spherical Configuration

As in the case of the elbow manipulator the first joint variable is the
base rotation and a solution is given as

Yo Hl p— _f]_ ti'lll(-rc- Hc)

provided xcand yc are not both zero.

o = Atan(r,s)+

o | =

The angle 6, is given from

. 2 ) :
Where: re=uxs+ys, s =z.—dy

As in the case of the elbow manipulator a second solution

for #1 is given by
01 =7+ Atan(x..y.):

The linear distance ds 1s found as

ds =12 +5s52 = \/rg + Y2 + (z. — dq)2.
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Recall the Stanford manipulator: Suppose that the desired position and orientation of the final frame are given by

ri riz2 1ri3 Oz
r r r 0 R o o
T3y T32 T33 O

0 () 0 1

To find the corresponding joint vartables 61, 02, d3, 04, 05, and #g we must solve the following
simultaneous set of nonlinear trigonometric equations
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Example

c1lea(cqesce — s486) — sassegl — s1(sacs5c6 + c456)
stlea(cacsce — s456) — sassee] + c1(sacs5c6 + cas6)
—s9(cqc5c6 — S456) — 25556

c1|—ca(cacssg + sacg) + sos5sg] — s1(—sgcs56 + cac6)
si|—ca(cacsse + sqce) + sasssgl + c1(—sgc556 + cqc6)
so(cqc5s6 + S4C6) + 25556

c1(cocysy + s9c5) — 15485

s1(cocysy + sacy) + 15485

— 590485 + €CoCy

c159d3 — s1ds + dg(c1c9cy55 + c1c559 — S15455)
s1s2d3 + c1da + de(c15455 + cacasiss + c55152)

cods + dg(cocy — c45955)

11
21
"31
12
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Although the general problem of inverse kinematics is quite difficult. it turns out that for
manipulators having six joints. with the last three joints intersecting at a point (such as
the Stanford Manipulator above), it is possible to decouple the inverse kinematics problem
into two simpler problems, known respectively, as inverse position kinematics, and
inverse orientation kinematics.

Re(q1.....q6) = R

og(q1,....q6) = o

where o and IR are the desired position and orientation of the tool frame
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For concreteness let us suppose that there are exactly six degrees-of-freedom and that
the last three joint axes intersect at a point o,.

- Kinematic Decoupling (example 1)

L

ST

(B B

g il
g

L1777/

AT

L T

5

n\\\\g
N

The important point of this assumption for the inverse kinematics is

that

motion of the final three links about these axes will not change the position of o,, and thus,

the position of the wrist center is thus a function of only the first three joint variables.

<y
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by Inverse kinematics
for robots with spherical wrist

- > last 3 joints RRR, with
- N oz e L axesintersecting in W

y “ first 3 robot joints
/ of any type (RRR, RRP, PPP, ..) 7~

6
Og=7p

| P {'JJZ3 Zs Zg = Q@
\ I - -~ 4 !L_'y-——l
o - ]4| 6

find g4, -+, g¢ from the input data

= p (origin Og)
X0 i1 = R=[n s a] (orientation of RF)

L. W=p—dga = q4,9,, 93 (inverse “position” kinematics for main axes)

2. R = °R3(q1,92.93) *R6(q4.95.96) = *Re(q4.q5.96) = "RIR = qu,qs, 6

giJen Kn CI,,,H Euler ZYZ or ZXZ X | (inverse “orientation”
‘r ete, 1 rotation matrix with — WO r€9Ular - kinematics for the wrist)
after step solutions

Robotics 1 q4.95,96 (604,05,66)



p— We decouple the two manipulators
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o+

Yo

Ip




Kinematic Decoupling (example 1)
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The origin of the tool frame (whose desired coordinates are given by o) is simply obtained

by a translation of distance dg along zx from o, .

DH parameters for spherical wrist.
Link | a; | o | d; | 6;

4 0| -=90| 0 | &3
5 0| 90 0 | 6

6 | 0| 0 |ds| 8

In our case, z5 and zg are the same axis, and the third column of R expresses the direction of zg
with respect to the base frame. Therefore, we have
0
0 -
o = o.+dgRR | 0
1



(example 1)

UNIVERSITAT

'#  Inverse Kinematics Trick: kinematic decoupling

Possible if 6 joints and last 3 joint axis intersect at a point
1. Find position of writs axes (w.c.) o,
2. Find orientation of the wrist

l # ,. a s
771 0% O DH parameters for spherical wrist.
oA

X4 <-+- { -1 ] - . . .
~ fo Gripper Link | a; | oy d; | 6;

Z4 4 0] —-901] 0 | 6y

' Tool frame o D 0 90 () 9;

8 (w.c.) o, 6 0 0 de | Og

It is only possible when a set of axis intersect in one point (axes 4 5 6) se also the next slide.
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Solve with kinematic decoupling (position)

Problem: given (R, 0), solve for q4, ..., gs

Re(q1, -, q6) = R

0 _
06(q1, -, q6) = 0
Z3,Z4, Zs intersect at o, o, is a function of g4, g3, g3

Tool frame origin o is translation dg along zs from o,

de
>
0 23,.1‘5 - V6 9
— A0
0=o0;+dgR|0 1 8
1 X4 - {6\

1.solve for o?

O is known from DH but we don’t know O,

[1 0 0
R. =0 cosf —sing
0 sinf® cos@ |

[ cos@ O sind]
R, = 0 1 0
l—sind 0 cosdl

[cosf —sing 0]
R_=|sin® «coséd 0

L O 0 1]
Y6
1 oc ) ‘\\\
J Z \\‘
\ 64
\\\C\iG
Xg
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(example 1)

Answer: kinematic decoupling (position)

Problem: given (R, 0), solve for q4, ..., q¢
Re(q1,.,q6) =R, 0§(q1,..,q¢) = 0

Z3, Z4, Zs intersect at o, o is a function of q4, q2, 3
Tool frame origin o is translation d along z¢ from o,

0
— O((;) T dGR 0 P Y
&R
1.solve for o? ds
01
0) =0—dgR |0 Y -
£l |

T
2.0 = [0y,0y,0,] ,00 = [xc,¥c,2:]", solve o,

(X Oy — dgT3 \E’
[ 711 712 T13 O | Ye| = |0y — der3 N
re1 T2 T93 O
H = Y Z o
T3] T32 T33 O - | 07 d6r33d
0 0 0 1 - -




) s Kinematic Decoupling (eample 1)
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Thus in order to have the end-effector of the robot at the point with coordinates given by o
and with the orientation of the end-effector given by R = (7;;). it is necessary and sufficient
that the wrist center o, have coordinates given by

0
op = o—dgR | 0
1

and that the orientation of the frame ogrgygzg with respect to the base be given by R. If
the components of the end-effector position o are denoted 0., 0,, 0, and the components of
the wrist center o) are denoted . 1¢. z. then

T 0, — dgri3

Ye 0y — dg123
Ze 0, — dgra3



G0 o ow to evaluate the three angles?
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Zn
/ " \,__: B =T N -T “e
LI o= L
' i Op — (fﬁ!‘lg
e e — 0y — dgr23
Yo i Ze | I 0. — (!25?'33 ]

See the example for Inverse Kinematics for the Articulate Elbow (Tutorials)
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Answer kinematic decoupling (orientation)

11 12 1713 Oz

T T T (&}
H - 21 722 123 Oy
31 T32 T33 O

o o0 0 1

To get orientation of end effector
relative to 03x3y323,

R = RgRE
Solve
R = (RY)'R = (R 'RIR;
= (RD'R

Final 3 joint angles solve Euler
angles for R}




Y— THE DENAVIT-HARTENBERG CONVENTION
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Remember: Spherical Wrist

Link | a; | a7 | d; | 0;

1 o] -97]0]6

6 71 %
" 5 0] 90 | 0|6
T S 6 0| 0 |dg|6g

s To gripper -
Srip| * yariable

N Coordinates of the end-effector respect to the
T; = A A5 A = {jﬂ Ulﬁ b.a§e (in this case is link 3 the base which is not
i visible)
4506 — S456  —CaCs56 — S4C6 4S5 || Cassdg |
B 5.94{:5 Ce + C45¢ —S4C55¢ + CaCg  S485 S455dg
Rotation of the end-effector . TSs¢e 558 C5 |} C5de |
around the frame x4 y4 z4 L 0 U 0 I
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From Euler Angle (lecture 3)
'C¢C9C¢ p— S¢S¢ —C¢C95¢, p— S¢C¢ C¢Sg‘

Ryy,=|5¢CoCy T CpSy —S¢pCoSy +CpCy S Se

I —SgCy SeSy Co .

From Euler Angle spherical wrist (lecture 3)

CaleCe — 84S —Sule — CaleS;
CeCeSy T CySg CuCe—CeS,S¢
—C6Ss 5556

; 0 0

T63 - A4A5A6 -

Let¢p =604,0 =06:,and Y = 6,

1711

21
731

C4Se
5455
Cs
0

2 T3
22 123

kinematic decoupling (orientation)

-

I3z Ta3l

deS,Sc
deCs
1




) From Lecture 2 Inverse problem
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| | I tf.’::”:j CYCqfy — %QHL —tf_’::”:j CYSqyy — 559{:1.3‘ r__’:l.?_,y_‘.-_';i} |
R(¢) = R.(¢) Ry (V)R.n (V) = | s,cgcy + oSy —S5,C08) + CoCy S50
 —sacy 954 co

It is useful to solve the inverse problem, that is to determine the set of Euler angles corresponding
to a given rotation matrix (known)

12 713
29  T923

R — 21

7
sy T32 7133

By considering the elements [1, 3] and [2, 3] o = Atan2(roz, 713)

The function Atan2(y, ) computes the arctangent of the ratio y /2 but utilizes the
sign of each argument to determine which quadrant the resulting angle helongs
to; this allows the correct determination of an angle in a range of 27.



From Lecture 2 Inverse problem

Then, squaring and summing the elements [1, 3] and [2, 3] and using the element
[3, 3] yields

; ¢ 2 '
V= Ate1112( ri, + 13, f’:a:a)

The choice of the positive sign for the term r2,5+ r2,;limits the range of feasible
values of Jto (0, m).

On this assumption, considering the elements [3, 1] and [3, 2] gives

1 = Atan2(r3s, —731)



B) | pversrar Kinematic dECOUp“ﬂg

* Allows to simplify complex problem by dividing it in two
main structures of known kinematics (From DH usually)

* [t works only in case of spherical wrists with the three axes
which are coincident

* You have anyway to solve two inverse kinematic problems
(manipulator and spherical wrist)

* In general we can use a geometric approach on few robotic
structures but for the more complex ones we need
numerical methods (next class)
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Solution of Spherical Manipulator

Spherical Configuration

As in the case of the elbow manipulator the first joint variable is the
base rotation and a solution is given as

Yo Hl p— _f]_ ti'lll(-rc- Hc)

provided xcand yc are not both zero.

o = Atan(r,s)+

o | =

The angle 6, is given from

. 2 ) :
Where: re=uxs+ys, s =z.—dy

As in the case of the elbow manipulator a second solution

for #1 is given by
01 =7+ Atan(x..y.):

The linear distance ds 1s found as

ds =12 +5s52 = \/rg + Y2 + (z. — dq)2.
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SCARA Manipulator

As another example, we consider the SCARA manipulator whose forward kinematics is

defined by T, .

0
dl ‘\\r'—f ] Lillk a; 0% d i 9,
f‘i T]f Ve 1 ay 0 0 | 6,
J‘“H 2 Yo 2 a9 180 0 92
N N l e 3 0 0 d, | 0
\ el 4 0 0 dy 0,
________________________________________________________________ e
I c19C4 + 51984 —c1954 + s1oca 0 aq1c1 + aseqo i
5$19€4 — C1984 —S1954 —ci1ocq4 U a1sy + aosyo
T) =A;---Ay = .. _.
4 L 4 0 0 —1 —d3 — dy
i 0 0 0 1 i




ersi Solution of SCARA
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The inverse kinematics is then given as the set of solutions of the equation SCARA Manipulator
[ C19C4 + 51254  519C4 — €19254 0 aiecp +ascya |
$19C4 — €1254 —C12C4 — S1254 0 ay1sy + assqi9 B R o
0 0 —1 —d3 — dy 10 1
i 0 0 0 1 ]

Projecting the manipulator configuration onto the xg — yg plane immediately yields the
situation of Figure

He

Ho




Solution of SCARA
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SCARA Manipulator

The transformation from the base 0 to the end effector 4 is a
rotation matrix given by:

0

”" R = See —Co O 01 +6—604, = a= Atan(rii.ri2)
] 0 0 -1
We see from this that 62 = Atan (c2, V1 — fi‘?)
N r.:;r:‘; + (}g — (I% — n.%
where C2 = S
2aq1a9

61 = Atan(or,oy) — Atan(ai + a2c2,azs2).

We may then determine 04 from

By = H1+60—a = 61+H— Atan(ri1.712).

Finally ds s given as d3 = o0, 4+ dy.




The end!
—

Thank you for your Attentionlll

Any Questions?




