

INVERSE KINEMATICS Analytic Solution

Classes online

Professor

Dipartimento di Ingegneria informatica, automatica e gestionale Antonio Ruberti - DIAG Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Sapienza Università di Roma Via Ariosto 25, 00185 Roma, Italy

email: deluca [at] diag [dot] uniroma1 [dot] it (or a [dot] deluca [at] uniroma1 [dot] it) room A-210, tel +39 06 77274 052, fax +39 06 77274 033

Institutional homepage at my department

ISI-WoK ResearcherID: F-3835-2011; Scopus Author ID#: 7201948195; Google Scholar: my citations ORCID: 0000-0002-0713-5608

https://www.youtube.com/playlist?list=PLAQopGWIIcyaqDBW1zSKx7lHfVcOmWSWt

Kevin M. Lynch

Professor of Mechanical Engineering Chair, Mechanical Engineering Department Tech B222 +1 (847) 467-5451 kmlynch@northwestern.edu Curriculum vitae: Projects:

Swarm Robotics Robotic Manipulation Dynamic Locomotion Functional Electrical Stimulation Active Electrosense

https://www.youtube.com/watch?v=jVu-Hijns70&list=PLggLP4f-rq02vX0OQQ5vrCxbJrzamYDfx

Northwestern

University

Robot Kinematics

First problem in programming robots is to describe the position of the **«end-effector**» in relation to a fixed frame usually called **«base**»

kinematics

Robot joints are equipped with sensors (encoders or resolvers) feeding back their *rotation* to the central CPU

kinematics

$$[q_1, q_2, q_3, \dots, q_n]$$

CONFIGURATION SPACE (joints space)

How to relate the two SPACES?

$$[q_1, q_2, q_3, \dots, q_n] \longleftrightarrow [r_1, r_2, r_3, \dots, r_m]$$

Kinematics

•The dimension of the <u>configuration space</u> must be **larger or equal** to the dimension of the <u>task space</u> $(n \ge m)$

•To ensure the existence of Kinematics solutions.

Inverse Kinematics

The process of finding the joint angles that realizes a given (desired) position/orientation of the end-effector is known as *inverse kinematics*.

$$(q_1, q_2, q_3, \dots, q_n) = G(r_1, r_2, r_3, \dots, r_m)$$

inverse Kinematics

The process of finding the joint angles that realizes a given position/orientation of the end-effector is known as <u>inverse kinematics</u>.

$$(q_1, q_2, q_3, \dots, q_n) = G(r_1, r_2, r_3, \dots, r_m)$$

Inverse kinematics what are we looking for?

direct kinematics is always unique; how about inverse kinematics for this 6R robot?

Example: inverse Kinematics

Finding the appropriate *joint angles* that achieve this position it constitutes the *inverse kinematics* problem:

$$oldsymbol{q}^* := (heta_1^*, heta_2^*)$$

Unknown
$$\rightarrow (\theta_1^*, \theta_2^*)$$

Example: inverse Kinematics

The forward kinematic provided:

$$\left\{egin{array}{rcl} x_{
m des} &=& d_1\cos(heta_1^*) + d_2\cos(heta_1^* + heta_2^*) \ y_{
m des} &=& d_1\sin(heta_1^*) + d_2\sin(heta_1^* + heta_2^*) \end{array}
ight.$$

Squaring both sides of equation and summing them up:

$$egin{aligned} &x_{ ext{des}}^2+y_{ ext{des}}^2&=&d_1^2+d_2^2+2d_1d_2\left(\cos(heta_1^*)\cos(heta_1^*+ heta_2^*)+\sin(heta_1^*)\sin(heta_1^*+ heta_2^*)
ight)\ &=&d_1^2+d_2^2+2d_1d_2\cos(heta_2^*). \end{aligned}$$

There are two values of the angle. Why?

Example: inverse Kinematics

Appendix for compete calculation.

EXAMPLE: INVERSE KINEMATICS

The above derivations raise the following remarks:

- Inverse kinematics calculations are in general much more difficult than forward kinematics calculations;
- While a configuration q always yields *one* forward kinematics solution p, a given desired end-effector position p_{des} may correspond to zero, one, or multiple possible IK solutions q^* .

Redundancy (definition)

(x_{des},y_{des})

 θ^*

θ'*

 θ'_{1}

<u>**Redundancy**</u> arises when there are <u>multiple Inverse</u> <u>Kinematics</u> solutions for a given desired task value.

Task Space	Configuration Space			
$(x_{ m des},y_{ m des})$	$egin{aligned} &(heta_1^*, heta_2^*)\ &(heta{'}_1^*, heta{'}_2^*) \end{aligned}$			

Inverse Kinematics Caveats

 May or may not have a solution

INIVERSITAT IEIDELBERG

JKUNF

- 2. Even if solution exists, may or may not be unique
- 3. Because forward kinematics is generally nonlinear, solutions can be hard to obtain even if they exist Example: pretend you are a PUMA arm – how many solutions?

Multiple solutions

Left Arm Elbow Down

Inverse kinematics problem

- "given a desired end-effector pose (position + orientation), find the values of the joint variables that will realize it"
- a synthesis problem, with input data in the form

• T =
$$\begin{bmatrix} R & p \\ 000 & 1 \end{bmatrix}$$
 = ${}^{0}A_{n}(q)$ • r = $\begin{bmatrix} p \\ \phi \end{bmatrix}$ = f_r(q), or for any other task vector

classical formulation: generalized formulation: inverse kinematics for a given end-effector pose inverse kinematics for a given value of task variables

- a typical nonlinear problem
 - existence of a solution (workspace definition)
 - uniqueness/multiplicity of solutions ($r \in R^m, q \in R^n$)
 - solution methods

Solvability and robot workspace

(for tasks related to a desired end-effector Cartesian pose)

- primary workspace WS₁: set of all positions p that can be reached with at least one orientation (\u03c6 or R)
 - out of WS₁ there is no solution to the problem
 - when $p \in WS_1$, there is a suitable ϕ (or R) for which a solution exists
- secondary (or *dexterous*) workspace WS₂: set of positions p that can be reached with any orientation (among those feasible for the robot direct kinematics)

• when $p \in WS_2$, there exists a solution for any feasible ϕ (or R)

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

If you assume that the spherical wrist is with no rotational limits primary and secondary workspace are coincident, Because for all the position that I reach I can assume any orientation.

Workspace of planar 2R arm

- E-E positioning (m=2) of a planar 2R robot arm
 - 2 regular solutions in int(WS₁)
 - 1 solution on ∂WS_1
 - for $I_1 = I_2$: ∞ solutions in WS₂

Workspace of planar 2R arm

When we will study differential kinematics using the Jacobian matrix we will see that in Singular configuration the jacobian becomes singular (determinant is zero).

Possible situations

- if m = n
 - ∄ solutions
 - a finite number of solutions (regular/generic case)
 - "degenerate" solutions: infinite or finite set, but anyway different in number from the generic case (singularity)
- if m < n (robot is redundant for the kinematic task)
 - ∄ solutions
 - ∞^{n-m} solutions (regular/generic case)
 - a finite or infinite number of singular solutions

In the case of the Kuka Light arm: m=6 n=7 $\infty^{n-m} = \infty^1$

How to compute the inverse kinematics?

ANALYTICAL solution (in closed form)

NUMERICAL solution (in iterative form)

- preferred, if it can be found^{*}
- use ad-hoc geometric inspection
- algebraic methods (solution of polynomial equations)
- systematic ways for generating a reduced set of equations to be solved

- certainly needed if n>m (redundant case), or at/close to singularities
- slower, but easier to be set up
- in its basic form, it uses the (analytical) Jacobian matrix of the direct kinematics map

$$J_r(q) = \frac{\partial f_r(q)}{\partial q}$$

• Newton method, Gradient method, and so on... $r = \begin{bmatrix} p \\ p \end{bmatrix} = f_r(q)$, or for any

> generalized formulation: inverse kinematics for a given value of task variables

Inverse Kinematics Analytical Solution

the inverse problem of finding the joint variables in terms of the **end-effector position** and **orientation** it is, in general, more difficult than the forward kinematics problem.

To do list

- we begin by formulating the general inverse kinematics problem.
- we describe the principle of kinematic decoupling and how it can be used to simplify the inverse kinematics of most modern manipulators.
- Using kinematic decoupling, we can consider the position and orientation problems independently.
- We describe a geometric approach for solving the positioning problem, while we exploit the Euler angle parameterization to solve the orientation problem.

The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given a 4×4 homogeneous transformation

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \in SE(3)$$

with $R \in SO(3)$, find (one or all) solutions of the equation

$$T_n^0(q_1, \dots, q_n) = H$$
 where $T_n^0(q_1, \dots, q_n) = A_1(q_1) \cdots A_n(q_n).$

Here, H represents the desired position and orientation of the end-effector, and our task is to find the values for the joint variables q_1, \ldots, q_n so that $T_n^0(q_1, \ldots, q_n) = H$.

Inverse Kinematics Problem

The *inverse kinematics problem* consists of the determination of the joint variables corresponding to a given end-effector position and orientation.

On the other hand, the inverse kinematics problem is much more complex for the following reasons:

- The equations to solve are in general nonlinear, and thus it is not always possible to find a *closed-form solution*.
- Multiple solutions may exist.
- Infinite solutions may exist, e.g., in the case of a kinematically redundant manipulator.
- There might be no *admissible* solutions, in view of the manipulator kinematic structure.

Solution of Three-link Planar Arm

Find the joint variables ϑ_1 , ϑ_2 , ϑ_3 corresponding to a given end-effector position and orientation.

Remember the kinematic equation:

$$\boldsymbol{x}_{e} = \begin{bmatrix} p_{x} \\ p_{y} \\ \phi \end{bmatrix} = \boldsymbol{k}(\boldsymbol{q}) = \begin{bmatrix} a_{1}c_{1} + a_{2}c_{12} + a_{3}c_{123} \\ a_{1}s_{1} + a_{2}s_{12} + a_{3}s_{123} \\ \vartheta_{1} + \vartheta_{2} + \vartheta_{3} \end{bmatrix}$$

 $\phi = \vartheta_1 + \vartheta_2 + \vartheta_3$

Position of point P

Solution of Three-link Planar Arm

$$p_{Wx} = p_x - a_3 c_\phi = a_1 c_1 + a_2 c_{12}$$

$$p_{Wy} = p_y - a_3 s_\phi = a_1 s_1 + a_2 s_{12}$$
(1)

Squaring and summing

$$p_{Wx}^2 + p_{Wy}^2 = a_1^2 + a_2^2 + 2a_1a_2c_2$$

$$c_2 = \frac{p_{Wx}^2 + p_{Wy}^2 - a_1^2 - a_2^2}{2a_1 a_2}.$$

Hence, the angle ϑ_2 can be computed as $s_2 = \pm \sqrt{1 - c_2^2}$, $\vartheta_2 = A \tan 2(s_2, c_2)$.

Substituting ϑ_2 into the (1) yields an algebraic system of two equations in the two unknowns s_1 and c_1 , whose solution is

$$s_{1} = \frac{(a_{1} + a_{2}c_{2})p_{Wy} - a_{2}s_{2}p_{Wx}}{p_{Wx}^{2} + p_{Wy}^{2}} \qquad \qquad \vartheta_{1} = \\c_{1} = \frac{(a_{1} + a_{2}c_{2})p_{Wx} + a_{2}s_{2}p_{Wy}}{p_{Wx}^{2} + p_{Wy}^{2}}.$$

= Atan2
$$(s_1, c_1)$$
. $\vartheta_3 = \phi - \vartheta_1 - \vartheta_2$.

Law of cosine explained

 $a^2 = b^2 + c^2 - 2bc \cos(\theta)$

$$c^{2} = x^{2} + y^{2} = a_{1}^{2} + a_{2}^{2} - 2a_{1}a_{2}\cos(\pi - \theta_{2})$$

$$c^{2} = x^{2} + y^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos(\theta_{2})$$

$$\cos \theta_2 = \frac{x^2 + y^2 - \alpha_1^2 - \alpha_2^2}{2\alpha_1 \alpha_2} = D.$$

 $\vartheta_2 = \pm \cos^{-1}(c_2)$

Solution of Three-link Planar Arm

An alternative geometric solution technique is presented below.

The application of the cosine theorem to the triangle formed by links a_1 , a_2 and the segment connecting points W and O gives

$$p_{Wx}^2 + p_{Wy}^2 = a_1^2 + a_2^2 - 2a_1a_2\cos(\pi - \vartheta_2)$$

$$\cos (\pi - \vartheta_2) = -\cos \vartheta_2 \qquad c_2 = \frac{p_{Wx}^2 + p_{Wy}^2 - a_1^2 - a_2^2}{2a_1 a_2}.$$

elbow-up
$$\vartheta_2 \in (-\pi, 0)$$

elbow-down $\vartheta_2 \in (0, \pi)$.

Solution of Three-link Planar Arm

To find ϑ_1 consider the angles α and β

 $\alpha = \operatorname{Atan2}(p_{Wy}, p_{Wx}).$

To compute β , applying again the cosine theorem yields

$$c_{\beta}\sqrt{p_{Wx}^2 + p_{Wy}^2} = a_1 + a_2c_2$$

and resorting to the expression of c_2 given above leads to

$$\vartheta_1 = \alpha \pm \beta$$

$$\vartheta_3 = \phi - \vartheta_1 - \vartheta_2.$$

Solution of Spherical Wrist

 $\vartheta_6 = \operatorname{Atan2}(-s_z^3, n_z^3)$

Solution of Spherical manipulator

Spherical Configuration

As in the case of the elbow manipulator the first joint variable is the base rotation and a solution is given as

$$\theta_1 = A \tan(x_c, y_c)$$

provided x_c and y_c are not both zero.

The angle
$$\theta_2$$
 is given from $\theta_2 = A \tan(r, s) + \frac{\pi}{2}$

Where:
$$r^2 = x_c^2 + y_c^2, \ s = z_c - d_1$$

As in the case of the elbow manipulator a second solution for θ_1 is given by

$$\theta_1 = \pi + A \tan(x_c, y_c);$$

The linear distance d_3 is found as

$$d_3 = \sqrt{r^2 + s^2} = \sqrt{x_c^2 + y_c^2 + (z_c - d_1)^2}$$

Recall the Stanford manipulator: Suppose that the desired position and orientation of the final frame are given by

$$H = \begin{bmatrix} r_{11} & r_{12} & r_{13} & o_x \\ r_{21} & r_{22} & r_{23} & o_y \\ r_{31} & r_{32} & r_{33} & o_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \in SE(3)$$

To find the corresponding joint variables θ_1 , θ_2 , d_3 , θ_4 , θ_5 , and θ_6 we must solve the following simultaneous set of nonlinear trigonometric equations

Example

$$\begin{array}{rcl} c_1[c_2(c_4c_5c_6-s_4s_6)-s_2s_5c_6]-s_1(s_4c_5c_6+c_4s_6)&=&r_{11}\\ s_1[c_2(c_4c_5c_6-s_4s_6)-s_2s_5c_6]+c_1(s_4c_5c_6+c_4s_6)&=&r_{21}\\ &-s_2(c_4c_5c_6-s_4s_6)-c_2s_5s_6&=&r_{31}\\ c_1[-c_2(c_4c_5s_6+s_4c_6)+s_2s_5s_6]-s_1(-s_4c_5s_6+c_4c_6)&=&r_{22}\\ s_1[-c_2(c_4c_5s_6+s_4c_6)+s_2s_5s_6]+c_1(-s_4c_5s_6+c_4c_6)&=&r_{22}\\ &s_2(c_4c_5s_6+s_4c_6)+c_2s_5s_6&=&r_{32}\\ &c_1(c_2c_4s_5+s_2c_5)-s_1s_4s_5&=&r_{13}\\ s_1(c_2c_4s_5+s_2c_5)-s_1s_4s_5&=&r_{23}\\ &-s_2c_4s_5+c_2c_5&=&r_{33}\\ c_1s_2d_3-s_1d_2+d_6(c_1c_2c_4s_5+c_1c_5s_2-s_1s_4s_5)&=&o_x\\ s_1s_2d_3+c_1d_2+d_6(c_1s_4s_5+c_2c_4s_1s_5+c_5s_1s_2)&=&o_y\\ &c_2d_3+d_6(c_2c_5-c_4s_2s_5)&=&o_z. \end{array}$$

Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns out that for manipulators having six joints, with the last three joints intersecting at a point (such as the Stanford Manipulator above), it is possible to decouple the inverse kinematics problem into two simpler problems, known respectively, as **inverse position kinematics**, and **inverse orientation kinematics**.

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \in SE(3) \qquad T_n^0(q_1, \dots, q_n) = H$$

We express as two sets of equations representing the rotational and positional equations

$$\begin{array}{rcl} R_6^0(q_1, \dots, q_6) &=& R \\ o_6^0(q_1, \dots, q_6) &=& o \end{array}$$

where o and R are the desired position and orientation of the tool frame.

Kinematic Decoupling (example 1)

For concreteness let us suppose that there are exactly six degrees-of-freedom and that the last three joint axes intersect at a point o_c .

The important point of this assumption for the inverse kinematics is that motion of the final three links about these axes will not change the position of o_c , and thus, the position of the wrist center is thus a function of only the first three joint variables.

Inverse kinematics for robots with spherical wrist

We decouple the two manipulators

Kinematic Decoupling (example 1)

The origin of the tool frame (whose desired coordinates are given by o) is simply obtained by a translation of distance d_6 along z_5 from o_c .

In our case, z_5 and z_6 are the same axis, and the third column of R expresses the direction of z_6 with respect to the base frame. Therefore, we have

$$o = o_c^0 + d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

Inverse Kinematics Trick: kinematic decoupling

Possible if 6 joints and last 3 joint axis intersect at a point

- 1. Find position of writs axes (w.c.) o_c
- 2. Find orientation of the wrist

It is only possible when a set of axis intersect in one point (axes 4 5 6) se also the next slide.

(example 1)

O is known from DH but we don't know O_c

Η

=

Answer: kinematic decoupling (position)

(example 1)

Problem: given
$$(R, o)$$
, solve for $q_1, ..., q_6$
 $R_6^0(q_1, ..., q_6) = R$, $o_6^0(q_1, ..., q_6) = o$
 z_3, z_4, z_5 intersect at o_c, o_c is a function of q_1, q_2, q_3
Tool frame origin o is translation d_6 along z_5 from o_c
 $o = o_c^0 + d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}$
1.solve for o_c^0
 $o_c^0 = o - d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}$
2. $o = [o_x, o_y, o_z]^T, o_c = [x_c, y_c, z_c]^T$, solve o_c
 $\begin{bmatrix} x_c\\y_c\\z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13}\\ o_y - d_6 r_{23}\\ o_z - d_6 r_{33} \end{bmatrix}$

Kinematic Decoupling

Thus in order to have the end-effector of the robot at the point with coordinates given by oand with the orientation of the end-effector given by $R = (r_{ij})$, it is necessary and sufficient that the wrist center o_c have coordinates given by

$$\phi_c^0 = o - d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

and that the orientation of the frame $o_6 x_6 y_6 z_6$ with respect to the base be given by R. If the components of the end-effector position o are denoted o_x, o_y, o_z and the components of the wrist center o_c^0 are denoted x_c, y_c, z_c then

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$

How to evaluate the three angles?

See the example for Inverse Kinematics for the Articulate Elbow (Tutorials)

Answer kinematic decoupling (orientation)

 $H = \begin{bmatrix} r_{11} & r_{12} & r_{13} & o_x \\ r_{21} & r_{22} & r_{23} & o_y \\ r_{31} & r_{32} & r_{33} & o_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

To get orientation of end effector relative to $o_3 x_3 y_3 z_3$, $R = R_3^0 R_6^3$

Solve

$$R_6^3 = (R_3^0)^{-1}R = (R_3^0)^{-1}R_3^0 R_6^3$$

= $(R_3^0)^T R$

Final 3 joint angles solve Euler angles for R_6^3

Remember: Spherical Wrist

<i>7</i> -		Link	a_i	α_i	d_i	θ_i	
\tilde{x}_{5}^{3} , $\kappa \propto \theta_{-}$	A	4	0	-90	0	θ_4^*	
	\sim	5	0	90	0	$ heta_5^*$	
	····>	6	0	0	d_6	θ_6^*	
z_4	∡ To gripper		* .	variabl	е		
$\bigcup heta_4$							
$T_6^3 = A_4 A_5 A_6 =$	$\left[\begin{array}{cc} R_6^3 & o_6^3 \\ 0 & 1 \end{array}\right]$	Coordinates of the end-effector respect to the base (in this case is link 3 the base which is not visible)					
	$c_4c_5c_6 - s_4s_6$	$-c_4c_5s_6$ -	- s40	$c_6 c_4 s$	5 c_{i}	$_{4}s_{5}d_{6}$	
_	$s_4c_5c_6 + c_4s_6$	$-s_4c_5s_6$ -	$-c_4c$	$c_6 s_4 s_5$	5 s	$_{4}s_{5}d_{6}$	
Rotation of the end-effector	$-s_5c_6$	$s_{5}s_{6}$		c_5		$c_5 d_6$	
around the frame x4 y4 z4	0	0		0	L	1	<i></i>

kinematic decoupling (orientation)

From Euler Angle (lecture 3)

$$R_{ZYZ} = \begin{bmatrix} c_{\phi} c_{\theta} c_{\psi} - s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi} - s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\ s_{\phi} c_{\theta} c_{\psi} + c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi} + c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\ -s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

From Euler Angle spherical wrist (lecture 3)

$$T_6^3 = A_4 A_5 A_6 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -s_4 c_6 - c_4 c_5 s_6 & c_4 s_5 & d_6^* c_4 s_5 \\ c_5 c_6 s_4 + c_4 s_6 & c_4 c_6 - c_5 s_4 s_6 & s_4 s_5 & d_6^* s_4 s_5 \\ -c_6 s_5 & s_5 s_6 & c_5 & d_6^* c_5 \\ 0 & 0 & 1 \end{bmatrix}$$

Let $\phi = \theta_4^*$, $\theta = \theta_5^*$, and $\psi = \theta_6^*$

From Lecture 2 Inverse problem

$$\boldsymbol{R}(\boldsymbol{\phi}) = \boldsymbol{R}_{z}(\varphi)\boldsymbol{R}_{y'}(\vartheta)\boldsymbol{R}_{z''}(\psi) = \begin{bmatrix} c_{\varphi}c_{\vartheta}c_{\psi} - s_{\varphi}s_{\psi} & -c_{\varphi}c_{\vartheta}s_{\psi} - s_{\varphi}c_{\psi} & c_{\varphi}s_{\vartheta} \\ s_{\varphi}c_{\vartheta}c_{\psi} + c_{\varphi}s_{\psi} & -s_{\varphi}c_{\vartheta}s_{\psi} + c_{\varphi}c_{\psi} & s_{\varphi}s_{\vartheta} \\ -s_{\vartheta}c_{\psi} & s_{\vartheta}s_{\psi} & c_{\vartheta} \end{bmatrix}$$

It is useful to solve the *inverse problem*, that is to determine the **set of Euler** angles corresponding to a given rotation matrix (known)

$$\boldsymbol{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

By considering the elements [1, 3] and [2, 3]

$$\varphi = \operatorname{Atan2}(r_{23}, r_{13})$$

The function Atan2(y, x) computes the arctangent of the ratio y/x but utilizes the sign of each argument to determine which quadrant the resulting angle belongs to; this allows the correct determination of an angle in a range of 2π .

From Lecture 2 Inverse problem

Then, squaring and summing the elements [1, 3] and [2, 3] and using the element [3, 3] yields

$$\vartheta = \operatorname{Atan2}\left(\sqrt{r_{13}^2 + r_{23}^2}, r_{33}\right)$$

The choice of the positive sign for the term $r_{13}^2 + r_{23}^2$ limits the range of feasible values of ϑ to $(0, \pi)$.

On this assumption, considering the elements [3, 1] and [3, 2] gives

 $\psi = \operatorname{Atan2}(r_{32}, -r_{31})$

Kinematic decoupling

- Allows to simplify complex problem by dividing it in two main structures of known kinematics (From DH usually)
- It works only in case of spherical wrists with the three axes which are coincident
- You have anyway to solve two inverse kinematic problems (manipulator and spherical wrist)
- In general we can use a geometric approach on few robotic structures but for the more complex ones we need numerical methods (next class)

Solution of Spherical Manipulator

Spherical Configuration

As in the case of the elbow manipulator the first joint variable is the base rotation and a solution is given as

$$\theta_1 = A \tan(x_c, y_c)$$

provided x_c and y_c are not both zero.

The angle
$$\theta_2$$
 is given from $\theta_2 = A \tan(r, s) + \frac{\pi}{2}$

Where:
$$r^2 = x_c^2 + y_c^2, \ s = z_c - d_1$$

As in the case of the elbow manipulator a second solution for θ_1 is given by

$$\theta_1 = \pi + A \tan(x_c, y_c);$$

The linear distance d_3 is found as

$$d_3 = \sqrt{r^2 + s^2} = \sqrt{x_c^2 + y_c^2 + (z_c - d_1)^2}$$

Solution of SCARA

SCARA Manipulator

As another example, we consider the SCARA manipulator whose forward kinematics is defined by T_4^0 .

Link	a_i	$lpha_i$	d_i	θ_i
1	a_1	0	0	θ_{i}
2	a_2	180	0	θ_{z}
3	0	0	d,	0
4	0	0	d_4	θ_4

$$T_4^0 = A_1 \cdots A_4 = \begin{bmatrix} c_{12}c_4 + s_{12}s_4 & -c_{12}s_4 + s_{12}c_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -s_{12}s_4 - c_{12}c_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solution of SCARA

The inverse kinematics is then given as the set of solutions of the equation

SCARA Manipulator

$$\begin{bmatrix} c_{12}c_4 + s_{12}s_4 & s_{12}c_4 - c_{12}s_4 & 0 & a_1c_1 + a_2c_{12} \\ s_{12}c_4 - c_{12}s_4 & -c_{12}c_4 - s_{12}s_4 & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & -1 & -d_3 - d_4 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix}.$$

Projecting the manipulator configuration onto the $x_0 - y_0$ plane immediately yields the situation of Figure z_0

Solution of SCARA

SCARA Manipulator

The transformation from the base 0 to the end effector 4 is a rotation matrix given by:

$$R = \begin{bmatrix} c_{\alpha} & s_{\alpha} & 0 \\ s_{\alpha} & -c_{\alpha} & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \theta_{1} + \theta_{2} - \theta_{4} = \alpha = A \tan(r_{11}, r_{12})$$

We see from this that
$$\theta_2 = A \tan(c_2, \pm \sqrt{1 - c_2})$$

where $c_2 = \frac{o_x^2 + o_y^2 - a_1^2 - a_2^2}{2a_1 a_2}$

 $\theta_1 = A \tan(o_x, o_y) - A \tan(a_1 + a_2 c_2, a_2 s_2).$

We may then determine θ_4 from

 $\theta_4 = \theta_1 + \theta_2 - \alpha = \theta_1 + \theta_2 - A \tan(r_{11}, r_{12}).$

Finally d_3 is given as $d_3 = o_z + d_4$.

The end!

Thank you for your Attention!!! Any Questions?

