INVERSE KINEMATICS
Analytic Solution

Classes online

Professor
Dipartimento di Ingegneria informatica, automatica e gestionale Antonio Ruberti - DIAG Facoltà di Ingegneria dell'Informazione, Informatica e Statistica
Sapienza Università di Roma
Via Ariosto 25, 00185 Roma, Italy
email: deluca [at] diag [dot] uniroma1 [dot] it (or a [dot] deluca [at] uniroma1 [dot] it) room A-210, tel +39 0677274 052, fax +39 0677274033

Institutional homepage at my department
ISI-WoK ResearcherID: F-3835-2011; Scopus Author ID\#: 7201948195; Google Scholar: my citations ORCID: 0000-0002-0713-5608
https://www.youtube.com/playlist?list=PLAQopGWIlcyaqDBW1zSKx7lHfVcOmWSWt

Kevin M. Lynch

Professor of Mechanical Engineering
Chair, Mechanical Engineering Department
Tech B222
+1 (847) 467-5451
kmlynch@northwestern.edu
Curriculum vitae:

Projects:

Swarm Robotics
Robotic Manipulation
Dynamic Locomotion
Functional Electrical Stimulation
Active Electrosense
https://www.youtube.com/watch?v=jVu-Hijns70\&list=PLggLP4f-rq02vX00QQ5vrCxbJrzamYDfx

Robot Kinematics

First problem in programming robots is to describe the position of the «end-effector» in relation to a fixed frame usually called «base»

kinematics

Robot joints are equipped with sensors (encoders or resolvers) feeding back their rotation to the central CPU

kinematics

$\left[q_{1}, q_{2}, q_{3} \ldots . q_{n}\right]$

CONFIGURATION
SPACE
(joints space)

How to relate the two SPACES?

$$
\left[q_{1}, q_{2}, q_{3} \ldots . q_{n}\right] \Longleftrightarrow\left[r_{1}, r_{2}, r_{3} \ldots . . r_{m}\right]
$$

-The dimension of the configuration space must be larger or equal to the dimension of the task space

$$
(n \geq m)
$$

-To ensure the existence of Kinematics solutions.

Inverse Kinematics

The process of finding the joint angles that realizes a given (desired) position/orientation of the end-effector is known as inverse kinematics.

$$
\left(q_{1}, q_{2}, q_{3} \ldots ., q_{n}\right)=G\left(r_{1}, r_{2}, r_{3} \ldots . r_{m}\right)
$$

inverse Kinematics

The process of finding the joint angles that realizes a given position/orientation of the end-effector is known as inverse kinematics.

$$
\left(q_{1}, q_{2}, q_{3} \ldots ., q_{n}\right)=G\left(r_{1}, r_{2}, r_{3} \ldots . r_{m}\right)
$$

Inverse kinematics

what are we looking for?

direct kinematics is always unique; how about inverse kinematics for this 6R robot?

TASK:
to place the gripper at a desired position:

$$
\boldsymbol{p}_{\mathrm{des}}:=\left(x_{\mathrm{des}}, y_{\mathrm{des}}\right)
$$

Finding the appropriate joint angles that achieve this position it constitutes the inverse kinematics problem:

$$
\boldsymbol{q}^{*}:=\left(\theta_{1}^{*}, \theta_{2}^{*}\right)
$$

$$
\text { Unknown } \rightarrow \quad\left(\theta_{1}^{*}, \theta_{2}^{*}\right)
$$

Example: inverse Kinematics

The forward kinematic provided:

$$
\left\{\begin{aligned}
x_{\mathrm{des}} & =d_{1} \cos \left(\theta_{1}^{*}\right)+d_{2} \cos \left(\theta_{1}^{*}+\theta_{2}^{*}\right) \\
y_{\mathrm{des}} & =d_{1} \sin \left(\theta_{1}^{*}\right)+d_{2} \sin \left(\theta_{1}^{*}+\theta_{2}^{*}\right)
\end{aligned}\right.
$$

Squaring both sides of equation and summing them up:

$$
\begin{aligned}
x_{\mathrm{des}}^{2}+y_{\mathrm{des}}^{2} & =d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2}\left(\cos \left(\theta_{1}^{*}\right) \cos \left(\theta_{1}^{*}+\theta_{2}^{*}\right)+\sin \left(\theta_{1}^{*}\right) \sin \left(\theta_{1}^{*}+\theta_{2}^{*}\right)\right) \\
& =d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \left(\theta_{2}^{*}\right) .
\end{aligned}
$$

The forward kinematic provided:

$$
\begin{gathered}
x_{\mathrm{des}}^{2}+y_{\mathrm{des}}^{2}=d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \left(\theta_{2}^{*}\right) \\
\cos \left(\theta_{2}^{*}\right)=\frac{x_{\mathrm{des}}^{2}+y_{\mathrm{des}}^{2}-d_{1}^{2}-d_{2}^{2}}{2 d_{1} d_{2}} \\
\theta_{2}^{*}= \pm \arccos \left(\frac{x_{\mathrm{des}}^{2}+y_{\mathrm{des}}^{2}-d_{1}^{2}-d_{2}^{2}}{2 d_{1} d_{2}}\right)
\end{gathered}
$$

There are two values of the angle. Why?

Example: inverse Kinematics

Next, after some calculations, one can find the expression for the two angles:

$$
\begin{aligned}
\theta_{2}^{*} & = \pm \arccos \left(\frac{x_{\mathrm{des}}^{2}+y_{\mathrm{des}}^{2}-d_{1}^{2}-d_{2}^{2}}{2 d_{1} d_{2}}\right) \\
\theta_{1}^{*} & =\arctan 2\left(y_{\mathrm{des}}, x_{\mathrm{des}}\right)-\arctan 2\left(k_{2}, k_{1}\right)
\end{aligned}
$$

where

$$
k_{1}:=d_{1}+d_{2} \cos \left(\theta_{2}^{*}\right) \quad \text { and } \quad k_{2}:=d_{2} \sin \left(\theta_{2}^{*}\right)
$$

EXAMPLE: INVERSE KINEMATICS

The above derivations raise the following remarks:

- Inverse kinematics calculations are in general much more difficult than forward kinematics calculations;
- While a configuration \boldsymbol{q} always yields one forward kinematics solution \boldsymbol{p}, a given desired end-effector position $\boldsymbol{p}_{\text {des }}$ may correspond to zero, one, or multiple possible IK solutions \boldsymbol{q}^{*}.

Redundancy (definition)

Redundancy arises when there are multiple Inverse Kinematics solutions for a given desired task value.

Task Space	Configuration Space
	$\left(\theta_{1}^{*}, \theta_{2}^{*}\right)$
$\left(x_{\mathrm{des}}, y_{\mathrm{des}}\right)$	$\left(\theta_{1}^{\prime *}, \theta_{2}^{\prime *}\right)$

Inverse Kinematics Caveats

1. May or may not have a solution
2. Even if solution exists, may or may not be unique
3. Because forward kinematics is generally nonlinear, solutions can be hard to obtain even if they exist Example: pretend you are a PUMA arm - how many

solutions?

Multiple solutions

Left Arm Elbow Up

Left Arm Elbow Down

Right Arm Elbow Up

Right Arm Elbow Down

Inverse kinematics problem

- "given a desired end-effector pose (position + orientation), find the values of the joint variables that will realize it"
- a synthesis problem, with input data in the form

$$
\text { - } \mathrm{T}=\left[\begin{array}{c:c}
\mathrm{R} & \mathrm{p} \\
0000 & 1
\end{array}\right]={ }^{0} \mathrm{~A}_{\mathrm{n}}(\mathrm{q}) \quad-\mathrm{r}=\left[\begin{array}{l}
\mathrm{p} \\
\phi
\end{array}\right]=\mathrm{f}_{\mathrm{r}}(\mathrm{q}), \text { or for any } \begin{gathered}
\text { other task vector }
\end{gathered}
$$

inverse kinematics for a given end-effector pose inverse kinematics for a given value of task variables

- a typical nonlinear problem
- existence of a solution (workspace definition)
- uniqueness/multiplicity of solutions ($\mathrm{r} \in R^{\mathrm{m}}, \mathrm{q} \in R^{\mathrm{n}}$)
- solution methods

Solvability and robot workspace

(for tasks related to a desired end-effector Cartesian pose)

- primary workspace WS_{1} : set of all positions p that can be reached with at least one orientation (ϕ or R)
- out of WS_{1} there is no solution to the problem
- when $\mathrm{p} \in \mathrm{WS}_{1}$, there is a suitable ϕ (or R) for which a solution exists
- secondary (or dexterous) workspace WS_{2} : set of positions p that can be reached with any orientation (among those feasible for the robot direct kinematics)
- when $\mathrm{p} \in \mathrm{WS}_{2}$, there exists a solution for any feasible ϕ (or R)

Workspace of Fanuc R-2000i/165F

If you assume that the spherical wrist is with no rotational limits primary and secondary workspace are coincident, Because for all the position that I reach I can assume any orientation.

Workspace of planar 2R arm

- if $\mathrm{I}_{1} \neq \mathrm{I}_{2}$
- $\mathrm{WS}_{1}=\left\{\mathrm{p} \in R^{2}:\left|\left\|_{1}-\mathrm{I}_{2} \mid \leq\right\| \mathrm{p} \| \leq \mathrm{I}_{1}+\mathrm{I}_{2}\right\} \subset R^{2}\right.$
- $\mathrm{WS}_{2}=\varnothing$
- if $I_{1}=I_{2}=\ell$
- $\mathrm{WS}_{1}=\left\{\mathrm{p} \in R^{2}:\|\mathrm{p}\| \leq 2 \ell\right\} \subset R^{2}$
- $\mathrm{WS}_{2}=\{\mathrm{p}=0\}$ (infinite number of feasible orientations at the origin)
- E-E positioning ($\mathrm{m}=2$) of a planar 2 R robot arm
- 2 regular solutions in int $\left(\mathrm{WS}_{1}\right)$
- 1 solution on $\partial \mathrm{WS}_{1}$
- for $I_{1}=I_{2}: \infty$ solutions in $W S_{2}$

Workspace of planar 2R arm

When we will study differential kinematics using the Jacobian matrix we will see that in Singular configuration the jacobian becomes singular (determinant is zero).

- if $m=n$
- \nexists solutions
- a finite number of solutions (regular/generic case)
. "degenerate" solutions: infinite or finite set, but anyway different in number from the generic case (singularity)

- if $\mathrm{m}<\mathrm{n}$ (robot is redundant for the kinematic task)
- \nexists solutions
- ∞^{n-m} solutions (regular/generic case)
- a finite or infinite number of singular solutions

```
In the case of the Kuka Light arm:
m=6
n=7
\infty
```


How to compute the inverse kinematics?
 ANALYTICAL solution (in closed form)
 NUMERICAL solution
 (in iterative form)

- preferred, if it can be found*
- use ad-hoc geometric inspection
- algebraic methods (solution of polynomial equations)
- systematic ways for generating a reduced set of equations to be solved
- certainly needed if $n>m$ (redundant case), or at/close to singularities
- slower, but easier to be set up
- in its basic form, it uses the (analytical) Jacobian matrix of the direct kinematics map

$$
\mathrm{J}_{\mathrm{r}}(\mathrm{q})=\frac{\partial \mathrm{f}_{\mathrm{r}}(\mathrm{q})}{\partial \mathrm{q}}
$$

- Newton method, Gradient method, and so on...

$$
r=\left[\begin{array}{l}
p \\
\phi
\end{array}\right]=f_{r}(q), \begin{aligned}
& \text { or for any } \\
& \text { other task vector }
\end{aligned}
$$

Inverse Kinematics

Analytical Solution

the inverse problem of finding the joint variables in terms of the end-effector position and orientation it is, in general, more difficult than the forward kinematics problem.

To do list

- we begin by formulating the general inverse kinematics problem.
- we describe the principle of kinematic decoupling and how it can be used to simplify the inverse kinematics of most modern manipulators.
- Using kinematic decoupling, we can consider the position and orientation problems independently.
- We describe a geometric approach for solving the positioning problem, while we exploit the Euler angle parameterization to solve the orientation problem.

The General Inverse Kinematics Problem

The general problem of inverse kinematics can be stated as follows. Given a 4×4 homogeneous transformation

$$
H=\left[\begin{array}{cc}
R & o \\
0 & 1
\end{array}\right] \in S E(3)
$$

with $R \in S O(3)$, find (one or all) solutions of the equation

$$
T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=H \quad \text { where } \quad T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=A_{1}\left(q_{1}\right) \cdots A_{n}\left(q_{n}\right) .
$$

Here, H represents the desired position and orientation of the end-effector, and our task is to find the values for the joint variables q_{1}, \ldots, q_{n} so that $T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=H$.

The inverse kinematics problem consists of the determination of the joint variables corresponding to a given end-effector position and orientation.

On the other hand, the inverse kinematics problem is much more complex for the following reasons:

- The equations to solve are in general nonlinear, and thus it is not always possible to find a closed-form solution.
- Multiple solutions may exist.
- Infinite solutions may exist, e.g., in the case of a kinematically redundant manipulator.
- There might be no admissible solutions, in view of the manipulator kinematic structure.

Solution of Three-link Planar Arm

Position of point P

Find the joint variables $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$ corresponding to a given end-effector position and orientation.

Remember the kinematic equation:

$$
\begin{aligned}
\boldsymbol{x}_{e} & =\left[\begin{array}{c}
p_{x} \\
p_{y} \\
\phi
\end{array}\right]=\boldsymbol{k}(\boldsymbol{q})=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123} \\
\vartheta_{1}+\vartheta_{2}+\vartheta_{3}
\end{array}\right] \\
\phi & =\vartheta_{1}+\vartheta_{2}+\vartheta_{3}
\end{aligned}
$$

Solution of Three-link Planar Arm

$$
\begin{align*}
p_{W x} & =p_{x}-a_{3} c_{\phi}=a_{1} c_{1}+a_{2} c_{12} \\
p_{W y} & =p_{y}-a_{3} s_{\phi}=a_{1} s_{1}+a_{2} s_{12} \tag{1}
\end{align*}
$$

Squaring and summing

$$
\begin{aligned}
& p_{W x}^{2}+p_{W y}^{2}=a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} c_{2} \\
& c_{2}=\frac{p_{W x}^{2}+p_{W y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} .
\end{aligned}
$$

Hence, the angle ϑ_{2} can be computed as $\quad s_{2}= \pm \sqrt{1-c_{2}^{2}}, \quad \vartheta_{2}=\operatorname{Atan} 2\left(s_{2}, c_{2}\right)$.
Substituting ϑ_{2} into the (1) yields an algebraic system of two equations in the two unknowns s_{1} and c_{1}, whose solution is

$$
\begin{array}{ll}
s_{1}=\frac{\left(a_{1}+a_{2} c_{2}\right) p_{W y}-a_{2} s_{2} p_{W x}}{p_{W x}^{2}+p_{W y}^{2}} \\
c_{1}=\frac{\left(a_{1}+a_{2} c_{2}\right) p_{W x}+a_{2} s_{2} p_{W y}}{p_{W x}^{2}+p_{W y}^{2}} & \vartheta_{1}=\operatorname{Atan} 2\left(s_{1}, c_{1}\right) . \\
&
\end{array}
$$

Law of cosine explained

$a^{2}=b^{2}+c^{2}-2 \mathrm{bc} \cos (\theta)$

$$
\begin{aligned}
& c^{2}=x^{2}+y^{2}=\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}^{2}-2 \mathrm{a}_{1} \mathrm{a}_{2} \cos \left(\pi-\theta_{2}\right) \\
& c^{2}=x^{2}+y^{2}=\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}^{2}+2 \mathrm{a}_{1} \mathrm{a}_{2} \cos \left(\theta_{2}\right)
\end{aligned}
$$

$$
\cos \theta_{2}=\frac{x^{2}+y^{2}-\alpha_{1}^{2}-\alpha_{2}^{2}}{2 \alpha_{1} \alpha_{2}}=D .
$$

An alternative geometric solution technique is presented below.
The application of the cosine theorem to the triangle formed by links a_{1}, a_{2} and the segment connecting points W and O gives

$$
\begin{gathered}
p_{W x}^{2}+p_{W y}^{2}=a_{1}^{2}+a_{2}^{2}-2 a_{1} a_{2} \cos \left(\pi-\vartheta_{2}\right) \\
\cos \left(\pi-\vartheta_{2}\right)=-\cos \vartheta_{2} \quad c_{2}=\frac{p_{W x}^{2}+p_{W y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} . \\
\vartheta_{2}= \pm \cos ^{-1}\left(c_{2}\right) \\
\begin{array}{l}
\text { elbow-up } \vartheta_{2} \in(-\pi, 0) \\
\text { elbow-down } \vartheta_{2} \in(0, \pi) .
\end{array}
\end{gathered}
$$

To find ϑ_{1} consider the angles α and β

$$
\alpha=\operatorname{Atan} 2\left(p_{W y}, p_{W x}\right)
$$

To compute β, applying again the cosine theorem yields

$$
c_{\beta} \sqrt{p_{W x}^{2}+p_{W y}^{2}}=a_{1}+a_{2} c_{2}
$$

and resorting to the expression of c_{2} given above leads to

$$
\begin{array}{r}
\beta=\cos ^{-1}\left(\frac{p_{W x}^{2}+p_{W y}^{2}+a_{1}^{2}-a_{2}^{2}}{2 a_{1} \sqrt{p_{W x}^{2}+p_{W y}^{2}}}\right) \\
\begin{array}{|c}
\vartheta_{1}=\alpha \pm \beta \\
\vartheta_{3}=\phi-\vartheta_{1}-\vartheta_{2}
\end{array}
\end{array}
$$

Solution of Spherical Wrist

$$
\begin{gathered}
\boldsymbol{T}_{6}^{3}(\boldsymbol{q})=\boldsymbol{A}_{4}^{3} \boldsymbol{A}_{5}^{4} \boldsymbol{A}_{6}^{5}=\left[\begin{array}{ccc:c}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\
\hdashline 0 & & 0 & 1
\end{array}\right] \\
\hdashline \boldsymbol{R}_{6}^{3}=\left[\begin{array}{ccc}
n_{x}^{3} & s_{x}^{3} & a_{x}^{3} \\
n_{y}^{3} & s_{y}^{3} & a_{y}^{3} \\
n_{z}^{3} & s_{z}^{3} & a_{z}^{3}
\end{array}\right]
\end{gathered}
$$

for $\vartheta_{5} \in(0, \pi)$, and $\quad \vartheta_{4}=\operatorname{Atan} 2\left(a_{y}^{3}, a_{x}^{3}\right)$

$$
\begin{aligned}
& \vartheta_{5}=\operatorname{Atan} 2\left(\sqrt{\left(a_{x}^{3}\right)^{2}+\left(a_{y}^{3}\right)^{2}}, a_{z}^{3}\right) \\
& \vartheta_{6}=\operatorname{Atan} 2\left(s_{z}^{3},-n_{z}^{3}\right)
\end{aligned}
$$

for $\vartheta_{5} \in(-\pi, 0)$

$$
\begin{aligned}
& \vartheta_{4}=\operatorname{Atan} 2\left(-a_{y}^{3},-a_{x}^{3}\right) \\
& \vartheta_{5}=\operatorname{Atan} 2\left(-\sqrt{\left(a_{x}^{3}\right)^{2}+\left(a_{y}^{3}\right)^{2}}, a_{z}^{3}\right) \\
& \vartheta_{6}=\operatorname{Atan} 2\left(-s_{z}^{3}, n_{z}^{3}\right)
\end{aligned}
$$

DH parameters for spherical wrist.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

Solution of Spherical manipulator

Spherical Configuration

As in the case of the elbow manipulator the first joint variable is the base rotation and a solution is given as

$$
\theta_{1}=A \tan \left(x_{c}, y_{c}\right)
$$

provided x_{c} and y_{c} are not both zero.
The angle θ_{2} is given from $\quad \theta_{2}=A \tan (r, s)+\frac{\pi}{2}$
Where: $\quad r^{2}=x_{c}^{2}+y_{c}^{2}, s=z_{c}-d_{1}$
As in the case of the elbow manipulator a second solution for θ_{1} is given by

$$
\theta_{1}=\pi+A \tan \left(x_{c}, y_{c}\right)
$$

The linear distance d_{3} is found as

$$
d_{3}=\sqrt{r^{2}+s^{2}}=\sqrt{x_{c}^{2}+y_{c}^{2}+\left(z_{c}-d_{1}\right)^{2}} .
$$

Example

Recall the Stanford manipulator: Suppose that the desired position and orientation of the final frame are given by

$$
H=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & o_{x} \\
r_{21} & r_{22} & r_{23} & o_{y} \\
r_{31} & r_{32} & r_{33} & o_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R & o \\
0 & 1
\end{array}\right] \in S E(3)
$$

To find the corresponding joint variables $\theta_{1}, \theta_{2}, d_{3}, \theta_{4}, \theta_{5}$, and θ_{6} we must solve the following simultaneous set of nonlinear trigonometric equations

Example

$$
\begin{aligned}
c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-s_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) & =r_{11} \\
s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) & =r_{21} \\
-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} s_{6} & =r_{31} \\
c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) & =r_{12} \\
s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) & =r_{22} \\
s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} & =r_{32} \\
c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} & =r_{13} \\
s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} & =r_{23} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5} & =r_{33} \\
c_{1} s_{2} d_{3}-s_{1} d_{2}+d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) & =o_{x} \\
s_{1} s_{2} d_{3}+c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) & =o_{y} \\
c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right) & =o_{z} .
\end{aligned}
$$

Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns out that for manipulators having six joints, with the last three joints intersecting at a point (such as the Stanford Manipulator above), it is possible to decouple the inverse kinematics problem into two simpler problems, known respectively, as inverse position kinematics, and inverse orientation kinematics.

$$
H=\left[\begin{array}{cc}
R & o \\
0 & 1
\end{array}\right] \in S E(3) \quad T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=H
$$

We express as two sets of equations representing the rotational and positional equations

$$
\begin{aligned}
R_{6}^{0}\left(q_{1}, \ldots, q_{6}\right) & =R \\
o_{6}^{0}\left(q_{1}, \ldots, q_{6}\right) & =o
\end{aligned}
$$

where o and R are the desired position and orientation of the tool frame

Kinematic Decoupling (example 1)

For concreteness let us suppose that there are exactly six degrees-of-freedom and that the last three joint axes intersect at a point o_{c}.

The important point of this assumption for the inverse kinematics is that motion of the final three links about these axes will not change the position of o_{c}, and thus, the position of the wrist center is thus a function of only the first three joint variables.

Inverse kinematics for robots with spherical wrist

1. $W=p-d_{6} a \Rightarrow q_{1}, q_{2}, q_{3}$ (inverse "position" kinematics for main axes)
2. $R={ }^{0} R_{3}\left(q_{1}, q_{2}, q_{3}\right) \underbrace{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right) \Rightarrow{ }^{3} R_{6}\left(q_{4}, q_{5}, q_{6}\right)={ }^{0} R_{3}^{T} R \Rightarrow q_{4}, q_{5}, q_{6}$

We decouple the two manipulators

Kinematic Decoupling (example 1)

The origin of the tool frame (whose desired coordinates are given by o) is simply obtained by a translation of distance d_{6} along z_{5} from o_{c}.

DH parameters for spherical wrist.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

In our case, z_{5} and z_{6} are the same axis, and the third column of R expresses the direction of z_{6} with respect to the base frame. Therefore, we have

$$
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Inverse Kinematics Trick: kinematic decoupling

Possible if 6 joints and last 3 joint axis intersect at a point

1. Find position of writs axes (w.c.) o_{c}
2. Find orientation of the wrist

DH parameters for spherical wrist.

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

It is only possible when a set of axis intersect in one point (axes 45 6) se also the next slide.

(example 1)

Solve with kinematic decoupling (position)

$$
\begin{aligned}
& R_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

z_{3}, z_{4}, z_{5} intersect at o_{c}, o_{c} is a function of q_{1}, q_{2}, q_{3}
Tool frame origin o is translation d_{6} along z_{5} from o_{c}

O is known from DH but we don't know O_{c}

Answer: kinematic decoupling (position)

Problem: given (R, o), solve for q_{1}, \ldots, q_{6}
$R_{6}^{0}\left(q_{1}, \ldots, q_{6}\right)=R, \quad o_{6}^{0}\left(q_{1}, \ldots, q_{6}\right)=o$
z_{3}, z_{4}, z_{5} intersect at o_{c}, o_{c} is a function of q_{1}, q_{2}, q_{3}
Tool frame origin o is translation d_{6} along z_{5} from o_{c}

$$
o=o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

1.solve for o_{c}^{0}

$$
o_{c}^{0}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\text { 2.o }=\left[o_{x}, o_{y}, o_{z}\right]^{T}, o_{c}=\left[x_{c}, y_{c}, z_{c}\right]^{T}, \text { solve } o_{c}
$$

$H=\left[\begin{array}{cccc}r_{11} & r_{12} & r_{13} & o_{x} \\ r_{21} & r_{22} & r_{23} & o_{y} \\ r_{31} & r_{32} & r_{33} & o_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
$$

Kinematic Decoupling

Thus in order to have the end-effector of the robot at the point with coordinates given by o and with the orientation of the end-effector given by $R=\left(r_{i j}\right)$, it is necessary and sufficient that the wrist center o_{c} have coordinates given by

$$
o_{c}^{0}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and that the orientation of the frame $o_{6} x_{6} y_{6} z_{6}$ with respect to the base be given by R. If the components of the end-effector position o are denoted o_{x}, o_{y}, o_{z} and the components of the wrist center o_{c}^{0} are denoted x_{c}, y_{c}, z_{c} then

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{c}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right] .
$$

How to evaluate the three angles?

$$
\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{c}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
$$

See the example for Inverse Kinematics for the Articulate Elbow (Tutorials)

Answer kinematic decoupling (orientation)

$$
H=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & o_{x} \\
r_{21} & r_{22} & r_{22} & y_{y} \\
r_{31} & r_{32} & r_{33} & o_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

To get orientation of end effector relative to $o_{3} x_{3} y_{3} z_{3}$,

$$
R=R_{3}^{0} R_{6}^{3}
$$

Solve

$$
\begin{aligned}
R_{6}^{3} & =\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{-1} R_{3}^{0} R_{6}^{3} \\
& =\left(R_{3}^{0}\right)^{T} R
\end{aligned}
$$

Final 3 joint angles solve Euler angles for R_{6}^{3}

Remember: Spherical Wrist

$$
T_{6}^{3}=A_{4} A_{5} A_{6}=\left[\begin{array}{cc}
R_{6}^{3} & o_{6}^{3} \\
0 & 1
\end{array}\right]
$$

Coordinates of the end-effector respect to the base (in this case is link 3 the base which is not visible)
$=\left[\begin{array}{ccc:c}c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\ s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\ -s_{5} c_{6} & s_{5} s_{6} & c_{5} & c_{5} d_{6} \\ 0 & 0 & 0 & 1\end{array}\right]$ around the frame $\mathrm{x} 4 \mathrm{y} 4 \mathrm{z4}$

kinematic decoupling (orientation)

From Euler Angle (lecture 3)

$$
R_{Z Y Z}=\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

From Euler Angle spherical wrist (lecture 3)

$$
T_{6}^{3}=A_{4} A_{5} A_{6}=\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -s_{4} c_{6}-c_{4} c_{5} s_{6} & c_{4} s_{5} & d_{6}^{*} c_{4} s_{5} \\
c_{5} c_{6} s_{4}+c_{4} s_{6} & c_{4} c_{6}-c_{5} s_{4} s_{6} & s_{4} s_{5} & d_{6}^{*} s_{4} s_{5} \\
-c_{6} s_{5} & s_{5} s_{6} & c_{5} & d_{6}^{*} c_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Let $\phi=\theta_{4}^{*}, \theta=\theta_{5}^{*}$, and $\psi=\theta_{6}^{*}$

From Lecture 2 Inverse problem

$$
\boldsymbol{R}(\phi)=\boldsymbol{R}_{z}(\varphi) \boldsymbol{R}_{y^{\prime}}(\vartheta) \boldsymbol{R}_{z^{\prime \prime}}(\psi)=\left[\begin{array}{ccc}
c_{\varphi} c_{\vartheta} c_{\psi}-s_{\varphi} s_{\psi} & -c_{\varphi} c_{\vartheta} s_{\psi}-s_{\varphi} c_{\psi} & c_{\varphi} s_{\vartheta} \\
s_{\varphi} c_{\vartheta} c_{\psi}+c_{\varphi} s_{\psi} & -s_{\varphi} c_{\vartheta} s_{\psi}+c_{\varphi} c_{\psi} & s_{\varphi} s_{\vartheta} \\
-s_{\vartheta} c_{\psi} & s_{\vartheta} s_{\psi} & c_{\vartheta}
\end{array}\right]
$$

It is useful to solve the inverse problem, that is to determine the set of Euler angles corresponding to a given rotation matrix (known)

$$
\boldsymbol{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

By considering the elements [1, 3] and $[2,3] \quad \varphi=\operatorname{Atan} 2\left(r_{23}, r_{13}\right)$

From Lecture 2 Inverse problem

Then, squaring and summing the elements $[1,3]$ and $[2,3]$ and using the element [3, 3] yields

$$
\vartheta=\operatorname{Atan} 2\left(\sqrt{r_{13}^{2}+r_{23}^{2}}, r_{33}\right)
$$

The choice of the positive sign for the term $r_{13}^{2}+r_{23}^{2}$ limits the range of feasible values of ϑ to $(0, \pi)$.

On this assumption, considering the elements $[3,1]$ and $[3,2]$ gives

$$
\psi=\operatorname{Atan} 2\left(r_{32},-r_{31}\right)
$$

ZUKUNFT
SEIT 1386

Kinematic decoupling

- Allows to simplify complex problem by dividing it in two main structures of known kinematics (From DH usually)
- It works only in case of spherical wrists with the three axes which are coincident
- You have anyway to solve two inverse kinematic problems (manipulator and spherical wrist)
- In general we can use a geometric approach on few robotic structures but for the more complex ones we need numerical methods (next class)

Solution of Spherical Manipulator

As in the case of the elbow manipulator the first joint variable is the base rotation and a solution is given as

$$
\theta_{1}=A \tan \left(x_{c}, y_{c}\right)
$$

provided x_{c} and y_{c} are not both zero.
The angle θ_{2} is given from $\quad \theta_{2}=A \tan (r, s)+\frac{\pi}{2}$
Where: $\quad r^{2}=x_{c}^{2}+y_{c}^{2}, s=z_{c}-d_{1}$
As in the case of the elbow manipulator a second solution for θ_{1} is given by

$$
\theta_{1}=\pi+A \tan \left(x_{c}, y_{c}\right)
$$

The linear distance d_{3} is found as

$$
d_{3}=\sqrt{r^{2}+s^{2}}=\sqrt{x_{c}^{2}+y_{c}^{2}+\left(z_{c}-d_{1}\right)^{2}}
$$

Solution of SCARA

As another example, we consider the SCARA manipulator whose forward kinematics is defined by T_{4}^{0}.

The inverse kinematics is then given as the set of solutions of the equation

$$
\left[\begin{array}{cccc}
c_{12} c_{4}+s_{12} s_{4} & s_{12} c_{4}-c_{12} s_{4} & 0 & a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -c_{12} c_{4}-s_{12} s_{4} & 0 & a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 & -d_{3}-d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R & o \\
0 & 1
\end{array}\right] .
$$

Projecting the manipulator configuration onto the $x_{0}-y_{0}$ plane immediately yields the situation of Figure

Solution of SCARA

The transformation from the base 0 to the end effector 4 is a rotation matrix given by:
$R=\left[\begin{array}{ccc}c_{\alpha} & s_{\alpha} & 0 \\ s_{\alpha} & -c_{\alpha} & 0 \\ 0 & 0 & -1\end{array}\right] \quad \theta_{1}+\theta_{2}-\theta_{4}=\alpha=A \tan \left(r_{11}, r_{12}\right)$
We see from this that $\quad \theta_{2}=A \tan \left(c_{2}, \pm \sqrt{1-c_{2}}\right)$

$$
\begin{aligned}
\text { where } & c_{2}=\frac{o_{x}^{2}+o_{y}^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}} \\
\theta_{1} & =A \tan \left(o_{x}, o_{y}\right)-A \tan \left(a_{1}+a_{2} c_{2}, a_{2} s_{2}\right)
\end{aligned}
$$

We may then determine θ_{4} from

$$
\theta_{4}=\theta_{1}+\theta_{2}-\alpha=\theta_{1}+\theta_{2}-A \tan \left(r_{11}, r_{12}\right)
$$

Finally d_{3} is given as

$$
d_{3}=o_{z}+d_{4}
$$

The end!

Thank you for your Attention!!!

 Any Questions?

