## DIFFERENTIAL KINEMATICS



## VELOCITY KINEMATICS THE MANIPULATOR JACOBIAN

- In the previous classes we derived the forward and inverse position equations relating joint positions and end-effector positions and orientations.
- In this class we derive the velocity relationships, relating the linear and angular velocities of the end-effector (or any other point on the manipulator) to the joint velocities.
- In particular, we will derive the angular velocity of the end-effector frame (which gives the rate of rotation of the frame) and the linear velocity of the origin.
- The velocity relationships are then determined by the Jacobian matrix.


## Jacobian matrix

Remarks:

- $\boldsymbol{J}$ depends on the joint angles $\left(\theta_{1}, \theta_{2}\right)$;
- $\boldsymbol{J}$ has as many columns as the number of joint angles (here: 2 ), and as many rows as the number of parameters of the end-effector (here: 3 ).

The Jacobian matrix is useful in that it gives the relationship between joint angle velocity $\dot{\boldsymbol{q}}$ and the end-effector velocity $\dot{\boldsymbol{p}}$ :

$$
\dot{\boldsymbol{p}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}} .
$$

ZUKUNFT
SEIT 1386

This Jacobian or Jacobian matrix is one of the most important quantities in the analysis and control of robot motion.

It arises in virtually every aspect of robotic manipulation:

1. in the planning and execution of smooth trajectories,
2. in the determination of singular configurations,
3. in the execution of coordinated anthropomorphic motion,
4. in the derivation of the dynamic equations of motion,
5. and in the transformation of forces and torques from the end-effector to the manipulator joints.

## Angular Velocity

When a rigid body moves in a pure rotation about a fixed axis, every point of the body moves in a circle, then the angular velocity is given by

$$
\omega=\dot{\theta} \boldsymbol{k} \quad \boldsymbol{k} \text { is a unit vector in the direction of the axis of rotation. }
$$

Given the angular velocity of the body, one learns in introductory dynamics courses that the linear velocity of any point on the body is given by the equation

$$
\boldsymbol{v}=\omega \times \boldsymbol{r}
$$



If we attach a body $\mathbf{R}$ : Since every point on the object experiences the same angular velocity and since each point of the body is in a fixed geometric relationship to the body-attached frame, the angular velocity is a property of the attached coordinate frame itself.

## Differential kinematics

- "relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space)"
- instantaneous velocity mappings can be obtained through time derivation of the direct kinematics or in a geometric way, directly at the differential level
- different treatments arise for rotational quantities
- establish the link between angular velocity and
- time derivative of a rotation matrix
- time derivative of the angles in a minimal representation of orientation


## Linear and angular velocity of the robot end-effector



- $v$ and $\omega$ are "vectors", namely are elements of vector spaces
- they can be obtained as the sum of single contributions (in any order)
- these contributions will be those of the single the joint velocities
- on the other hand, $\phi$ (and $\dot{\phi}$ ) is not an element of a vector space
- a minimal representation of a sequence of two rotations is not obtained summing the corresponding minimal representations (accordingly, for their time derivatives)

```
in general,}\omega\not=\dot{\phi
```


## Finite and infinitesimal translations

- finite $\Delta x, \Delta y, \Delta z$ or infinitesimal $d x, d y, d z$ translations (linear displacements) always commute


Finite rotations do not commute

Demonstration 1 on the black board after the slide
example


## Infinitesimal rotations commute!

- infinitesimal rotations $d \phi_{x}, d \phi_{y}, d \phi_{z}$ around $x, y, z$ axes

Demonstration 2 on the black board

$$
\begin{aligned}
& R_{x}\left(\phi_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{x} & -\sin \phi_{x} \\
0 & \sin \phi_{x} & \cos \phi_{x}
\end{array}\right] \quad \Rightarrow R_{x}\left(d \phi_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -d \phi_{x} \\
0 & d \phi_{x} & 1
\end{array}\right] \\
& R_{Y}\left(\phi_{Y}\right)=\left[\begin{array}{ccc}
\cos \phi_{Y} & 0 & \sin \phi_{Y} \\
0 & 1 & 0 \\
-\sin \phi_{Y} & 0 & \cos \phi_{Y}
\end{array}\right] \quad \square R_{Y}\left(d \phi_{Y}\right)=\left[\begin{array}{ccc}
1 & 0 & d \phi_{Y} \\
0 & 1 & 0 \\
-d \phi_{Y} & 0 & 1
\end{array}\right] \\
& R_{z}\left(\phi_{z}\right)=\left[\begin{array}{ccc}
\cos \phi_{z} & -\sin \phi_{z} & 0 \\
\sin \phi_{z} & \cos \phi_{z} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \square R_{Z}\left(d \phi_{z}\right)=\left[\begin{array}{ccc}
1 & -d \phi_{z} & 0 \\
d \phi_{z} & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \begin{aligned}
\text { - } \mathrm{R}(\mathrm{~d} \phi)=\mathrm{R}\left(\mathrm{~d} \phi_{x}, \mathrm{~d} \phi_{y,}, \mathrm{~d} \phi_{Z}\right) & =\left[\begin{array}{rrr}
1 & -\mathrm{d} \phi_{z} & \mathrm{~d} \phi_{Y} \\
\mathrm{~d} \phi_{z} & 1 & -d \phi_{x} \\
-\mathrm{d} \phi_{y} & \mathrm{~d} \phi_{x} & 1
\end{array}\right] \\
\text { in any order } & =\mathrm{I}+\mathrm{S}(\mathrm{~d} \phi)
\end{aligned}
\end{aligned}
$$

## skew-symmetric matrix

In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric ${ }^{[1]}$ ) matrix is a square matrix whose transpose equals its negative, that is, it satisfies the condition ${ }^{[2]] p .} 38$

$$
A \text { skew-symmetric } \quad \Longleftrightarrow \quad A^{\top}=-A
$$

In terms of the entries of the matrix, if $a_{i j}$ denotes the entry in the $i$-th row and $j$-th column, then the skew-symmetric condition is equivalent to

$$
A \text { skew-symmetric } \Longleftrightarrow a_{j i}=-a_{i j}
$$

## Example

For example, the following matrix is skew-symmetric:

$$
A=\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & 0 & -4 \\
1 & 4 & 0
\end{array}\right]
$$

because

$$
-A=\left[\begin{array}{ccc}
0 & -2 & 1 \\
2 & 0 & 4 \\
-1 & -4 & 0
\end{array}\right]=A^{\top}
$$

## Time derivative of a rotation matrix

- let $R=R(t)$ be a rotation matrix, given as a function of time

Demonstration 3


- since $I=R(t) R^{\top}(t)$, taking the time derivative of both sides yields

$$
\begin{aligned}
0 & =\mathrm{d}\left[\mathrm{R}(\mathrm{t}) \mathrm{R}^{\top}(\mathrm{t})\right] / \mathrm{dt}=\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})+\mathrm{R}(\mathrm{t}) \mathrm{dR}^{\top}(\mathrm{t}) / \mathrm{dt} \\
& =\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})+\left[\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{R}^{\top}(\mathrm{t})\right]^{\top} \quad \text { Askewssymetric } \Leftrightarrow A^{\top}=-A
\end{aligned}
$$

thus $d R(t) / d t R^{\top}(t)=S(t)$ is a skew-symmetric matrix

- let $\mathrm{p}(\mathrm{t})=\mathrm{R}(\mathrm{t}) \mathrm{p}^{\prime}$ a vector (with constant norm) rotated over time
- comparing

$$
\begin{aligned}
& \mathrm{dp}(\mathrm{t}) / \mathrm{dt}=\mathrm{dR}(\mathrm{t}) / \mathrm{dt} \mathrm{p}^{\prime}=\mathrm{S}(\mathrm{t}) \mathrm{R}(\mathrm{t}) \mathrm{p}^{\prime}=\mathrm{S}(\mathrm{t}) \mathrm{p}(\mathrm{t}) \\
& \mathrm{dp}(\mathrm{t}) / \mathrm{dt}=\omega(\mathrm{t}) \times \mathrm{p}(\mathrm{t})=\mathrm{S}(\omega(\mathrm{t})) \mathrm{p}(\mathrm{t})
\end{aligned}
$$

we get $S=S(\omega)$


$$
\dot{\mathrm{R}}=\mathrm{S}(\omega) \mathrm{R} \quad \Longleftrightarrow \quad \mathrm{~S}(\omega)=\dot{\mathrm{R}} \mathrm{R}^{\top}
$$

## Example

Time derivative of an elementary rotation matrix

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{x}}(\phi(\mathrm{t}))=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi(\mathrm{t}) & -\sin \phi(\mathrm{t}) \\
0 & \sin \phi(\mathrm{t}) & \cos \phi(\mathrm{t})
\end{array}\right] \\
& \dot{\mathrm{R}}_{\mathrm{x}}(\phi) \mathrm{R}^{\top} \mathrm{x}(\phi)=\dot{\phi}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\sin \phi & -\cos \phi \\
0 & \cos \phi & -\sin \phi
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right] \\
&=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\dot{\phi} \\
0 & \dot{\phi} & 0
\end{array}\right]=\mathrm{S}(\omega) \quad S=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right], \\
& \omega=\left[\begin{array}{l}
\dot{\phi} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

## $\boldsymbol{S}(\mathbf{t})$ : physical interpretation.

$$
\dot{\boldsymbol{p}}(t)=\boldsymbol{\omega}(t) \times \boldsymbol{R}(t) \boldsymbol{p}^{\prime}
$$

Therefore, the matrix operator $\boldsymbol{S}(t)$ describes the vector product between the vector $\boldsymbol{\omega}$ and the vector $\boldsymbol{R}(t) \boldsymbol{p}^{\prime}$.

The matrix $\boldsymbol{S}(t)$ is so that its symmetric elements with respect to the main diagonal represent the components of the vector $\omega(t)=\left[\omega_{x} \omega_{y} \omega_{z}\right]^{\top}$ in the form:

$$
\begin{aligned}
& \boldsymbol{S}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right], \quad \begin{array}{l}
\text { We can rewrite } \\
\dot{\boldsymbol{R}}(t)=\boldsymbol{S}(t) \boldsymbol{R}(t) \quad \rightarrow \quad \dot{\boldsymbol{R}}=\boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R} . \\
\boldsymbol{S}(t)=\boldsymbol{S}(\boldsymbol{\omega}(t))
\end{array} \\
&
\end{aligned}
$$

## Linear and angular velocity of the robot end-effector



## Robot Jacobian matrices

- analytical Jacobian (obtained by time differentiation)

$$
r=\binom{\mathrm{p}}{\phi}=\mathrm{f}_{\mathrm{r}}(\mathrm{q}) \quad \longleftrightarrow \dot{\mathrm{r}}=\left[\begin{array}{l}
\dot{\mathrm{p}} \\
\dot{\phi}
\end{array}\right]=\frac{\partial \mathrm{f}_{\mathrm{r}}(\mathrm{q})}{\partial \mathrm{q}} \dot{\mathrm{q}}=\mathrm{J}_{\mathrm{r}}(\mathrm{q}) \dot{\mathrm{q}}
$$

- geometric Jacobian (no derivatives)

$$
\left(\begin{array}{l}
v \\
\omega
\end{array}\right]=\binom{\dot{p}}{\omega}=\binom{J_{\llcorner }(q)}{J_{A}(q)} \dot{q}=J(q) \dot{q}
$$

- in both cases, the Jacobian matrix depends on the (current) configuration of the robot


## Analytical Jacobian of planar 2R arm


direct kinematics

$$
r\left\{\begin{array}{l}
p_{x}=l_{1} c_{1}+l_{2} c_{12} \\
p_{y}=l_{1} s_{1}+l_{2} s_{12} \\
-\phi=q_{1}+q_{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \dot{\mathrm{p}}_{\mathrm{x}}=-\mathrm{l}_{1} \mathrm{~s}_{1} \dot{\mathrm{q}}_{1}-\mathrm{I}_{2} \mathrm{~s}_{12}\left(\dot{\mathrm{q}}_{1}+\dot{\mathrm{q}}_{2}\right) \\
& \dot{\mathrm{p}}_{\mathrm{y}}=\mathrm{l}_{1} \mathrm{c}_{1} \dot{\mathrm{q}}_{1}+\mathrm{I}_{2} \mathrm{c}_{12}\left(\dot{\mathrm{q}}_{1}+\dot{\mathrm{q}}_{2}\right) \\
& \hdashline \dot{\dot{\phi}}=\omega_{2}=\dot{\mathrm{q}}_{1}+\dot{\mathrm{q}}_{2}
\end{aligned} \quad \Rightarrow \mathrm{~J}_{\mathrm{r}}(\mathrm{q})=\left(\begin{array}{cc}
-\mathrm{I}_{1} \mathrm{~s}_{1}-\mathrm{I}_{2} \mathrm{~s}_{12} & -\mathrm{I}_{2} \mathrm{~s}_{12} \\
\mathrm{I}_{1} \mathrm{c}_{1}+\mathrm{I}_{2} \mathrm{c}_{12} & \mathrm{I}_{2} \mathrm{c}_{12} \\
--1 \\
1 & 1
\end{array}\right)
$$

here, all rotations occur around the same fixed axis $z$ (normal to the plane of motion)

Analytical Jacobian of polar robot


## Superposition principle

This article is about the superposition principle in linear systems. For other uses, see Superposition (disambiguation).
 stimulus individually. So that if input $A$ produces response $X$ and input $B$ produces response $Y$ then input $(A+B)$ produces response $(X+Y)$. A function $F(x)$ that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties; additivity and homogeneity

$$
\begin{array}{ll}
F\left(x_{1}+x_{2}\right)=F\left(x_{1}\right)+F\left(x_{2}\right) & \text { Additivity } \\
F(a x)=a F(x) & \text { Homogeneity }
\end{array}
$$

for scalar $a$.

## https://en.wikipedia.org/wiki/Superposition_principle



## Rotation

## Geometric Jacobian (Generalizing of $n$-dof)

always a $6 \times n$ matrix

$$
\underset{\underset{\mathrm{in}}{\text { instantaneous }}}{\underset{\text { velocity }}{\text { endector }}}\binom{\mathrm{v}_{\mathrm{E}}}{\omega_{\mathrm{E}}}=\left(\begin{array}{c}
\downarrow \\
\mathrm{J}_{\mathrm{L}}(\mathrm{q}) \\
\mathrm{J}_{\mathrm{A}}(\mathrm{q})
\end{array}\right) \dot{\mathrm{q}}=\left(\begin{array}{ccc}
\mathrm{J}_{\mathrm{L} 1}(\mathrm{q}) & \ldots & \mathrm{J}_{\mathrm{Ln}}(\mathrm{q}) \\
\mathrm{J}_{\mathrm{A} 1}(\mathrm{q}) & \ldots & \mathrm{J}_{\mathrm{An}}(\mathrm{q})
\end{array}\right)\left(\begin{array}{c}
\dot{\mathrm{q}}_{1} \\
\vdots \\
\dot{\mathrm{q}}_{\mathrm{n}}
\end{array}\right)
$$


linear and angular velocity belong to
(linear) vector spaces in $R^{3}$

## Velocity composition rule.

Generic approach for two frames
Let s consider the coordinate transformation of a point $P$ from Frame 1 to Frame 0 given by

$$
\boldsymbol{p}^{0}=\boldsymbol{o}_{1}^{0}+\boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1}
$$

Differentiating with respect to time and using $\quad \dot{\boldsymbol{R}}=\boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}$. 'es:

$$
\dot{\boldsymbol{p}}^{0}=\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\dot{\boldsymbol{R}}_{1}^{0} \boldsymbol{p}^{1}
$$



$$
\dot{\boldsymbol{p}}^{0}=\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{S}\left(\boldsymbol{\omega}_{1}^{0}\right) \boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1}
$$

Expressing $\quad \boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1}$ by $\boldsymbol{r}_{1}^{0}$

$$
\dot{\boldsymbol{p}}^{0}=\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{\omega}_{1}^{0} \times \boldsymbol{r}_{1}^{0}
$$

## Velocity composition rule

$$
\frac{\dot{\boldsymbol{p}}^{0}=\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{R}_{1}^{0} \dot{\boldsymbol{p}}^{1}+\boldsymbol{\omega}_{1}^{0} \times \boldsymbol{r}_{1}^{0}}{\mathbf{1} \mathbf{2}}
$$



We set :

$$
\boldsymbol{R}_{1}^{0} \boldsymbol{p}^{1} \text { by } \boldsymbol{r}_{1}^{0}
$$

1- Linear Velocity of the origin $O_{1}$ of $x_{1} y_{1} z_{1}$ respect to $x_{0} y_{0} z_{0}$
2- Linear Velocity of the vector $P$ respect to $x_{1} y_{1} z_{1}$ ( $=0$ because $P^{1}$ is fixed respect to $\left.\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}\right) \quad \dot{p}^{1}=0$.

3- Linear Velocity of the point $P$ respect to $x_{0} y_{0} z_{0}$

$$
\dot{\boldsymbol{p}}^{0}=\dot{\boldsymbol{o}}_{1}^{0}+\boldsymbol{\omega}_{1}^{0} \times \boldsymbol{r}_{1}^{0}
$$

## Geometric Jacobian Computation



## Geometric Jacobian Computation

The joints before the $i^{\text {th }}$ rotational joint are considered fixed, while the one after the $i^{\text {th }}$ rotational joint are considered as a single rigid body


## Expression of geometric Jacobian

$$
\left(\binom{\dot{p}_{0, \mathrm{E}}}{\omega_{\mathrm{E}}}=\right)\binom{\mathrm{v}_{\mathrm{E}}}{\omega_{\mathrm{E}}}=\binom{\mathrm{J}_{\mathrm{L}}(\mathrm{q})}{\mathrm{J}_{\mathrm{A}}(\mathrm{q})} \dot{\mathrm{q}}=\left(\begin{array}{lll}
\mathrm{J}_{\mathrm{L} 1}(\mathrm{q}) & \ldots & \mathrm{J}_{\mathrm{Ln}}(\mathrm{q}) \\
\mathrm{J}_{\mathrm{A} 1}(\mathrm{q}) & \ldots & \mathrm{J}_{\mathrm{An}}(\mathrm{q})
\end{array}\right)\left(\begin{array}{c}
\dot{\mathrm{q}}_{1} \\
\vdots \\
\dot{\mathrm{q}}_{n}
\end{array}\right)
$$

|  | prismatic <br> i-th joint | revolute <br> i-th joint | this can be also <br> computed as |
| :---: | :---: | :---: | :---: |
| $\mathrm{J}_{\mathrm{Li}}(\mathrm{q})$ | $\mathrm{z}_{\mathrm{i}-1}$ | $\mathrm{z}_{\mathrm{i}-1} \times \mathrm{p}_{\mathrm{i}-1, \mathrm{E}}$ | $=\frac{\partial \mathrm{p}_{0, \mathrm{E}}}{\partial \mathrm{q}_{\mathrm{i}}}$ |
| $\mathrm{J}_{\mathrm{Ai}}(\mathrm{q})$ | 0 | $\mathrm{z}_{\mathrm{i}-1}$ |  |

$$
\begin{aligned}
\mathrm{z}_{\mathrm{i}-1} & ={ }^{0} \mathrm{R}_{1}\left(\mathrm{q}_{1}\right) \ldots{ }^{i-2} \mathrm{R}_{\mathrm{i}-1}\left(\mathrm{q}_{\mathrm{i}-1}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\mathrm{p}_{\mathrm{i}-1, \mathrm{E}} & =\mathrm{p}_{0, \mathrm{E}}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right)-\mathrm{p}_{0, \mathrm{i}-1}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{i}-1}\right)
\end{aligned}
$$

all vectors should be expressed in the same reference frame (here, the base frame $\mathrm{RF}_{0}$ )

## Example: planar 2R arm



DENAVIT-HARTENBERG table

| joint | $\alpha_{\mathrm{i}}$ | $\mathrm{d}_{\mathrm{i}}$ | $\mathrm{a}_{\mathrm{i}}$ | $\theta_{\mathrm{i}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | $\mathrm{l}_{1}$ | $\mathrm{q}_{1}$ |
| 2 | 0 | 0 | $\mathrm{l}_{2}$ | $\mathrm{q}_{2}$ |

$$
{ }^{0} \mathrm{~A}_{1}=\left(\begin{array}{cccc}
\mathrm{c}_{1} & -\mathrm{s}_{1} & 0 & \mathrm{l}_{1} \mathrm{c}_{1} \\
\mathrm{~s}_{1} & \mathrm{c}_{1} & 0 & \mathrm{l}_{1} \mathrm{~s}_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \longleftarrow \mathrm{p}_{0,1} \quad \begin{aligned}
& \\
& \mathrm{p}_{1, \mathrm{E}}=\mathrm{p}_{0, \mathrm{E}}-\mathrm{p}_{0,1}
\end{aligned}
$$

$$
J=\left(\begin{array}{cc}
z_{0} \times p_{0, E} & z_{1} \times p_{1, \mathrm{E}} \\
z_{0} & z_{1}
\end{array}\right)
$$

$$
{ }^{0} \mathrm{~A}_{2}=\left(\begin{array}{cccc}
\mathrm{c}_{12} & -\mathrm{s}_{12} & 0 & \mathrm{l}_{1} \mathrm{c}_{1}+\mathrm{I}_{2} \mathrm{c}_{12} \\
\mathrm{~s}_{12} & \mathrm{c}_{12} & 0 & \mathrm{I}_{1} \mathrm{~s}_{1}+\mathrm{I}_{2} s_{12} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \leftarrow \mathrm{p}_{0, \mathrm{E}}
$$

## Geometric Jacobian of planar 2R arm


note: the Jacobian is here a $6 \times 2$ matrix, thus its maximum rank is 2

$$
\square
$$


at most 2 components of the linear/angular end-effector velocity can be independently assigned

# Video from Kevin Lynch Instructional 

https://www.youtube.com/watch?v=vjJgTvnQpBs


## Acceleration relations (and beyond...)

## Higher-order differential kinematics

- differential relations between motion in the joint space and motion in the task space can be established at the second order, third order, ...
- the analytical Jacobian always "weights" the highest-order derivative


## 】



- the same holds true also for the geometric Jacobian J(q)


## The end!

Thank you for your Attention!!! Any Questions?


