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* Inthe previous classes we derived the forward and inverse position equations relating joint
positions and end-effector positions and orientations.

* Inthis class we derive the velocity relationships, relating the linear and angular velocities of
the end-effector (or any other point on the manipulator) to the joint velocities.

* |n particular, we will derive the angular velocity of the end-effector frame (which gives the
rate of rotation of the frame) and the linear velocity of the origin.

* The velocity relationships are then determined by the Jacobian matrix.



Jacobian matrix

Configuration space (n=2)

< > -
—d; sin(6;) — dysin(6; + 62) —do sin(6; + 02) =~

©

J(01,02) = | dycos(6y) + dz2cos(6; +602)  dacos(6y + 62) 8
1 1 'Iél"

@

Remarks:

e J depends on the joint angles (61, 62);
e J has as many columns as the number of joint angles (here: 2), and as many rows as
the number of parameters of the end-effector (here: 3).

The Jacobian matrix is useful in that it gives the relationship between joint angle
velocity g and the end-effector velocity p:

p = J(q)q.
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This Jacobian or Jacobian matrix is one of the most important quantities in the
analysis and control of robot motion.

It arises in virtually every aspect of robotic manipulation:

1. in the planning and execution of smooth trajectories,

. in the determination of singular configurations,

. in the execution of coordinated anthropomorphic motion,

. in the derivation of the dynamic equations of motion,

.and in the transformation of forces and torques from the end-effector to the
manipulator joints.
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Angular Velocity

When a rigid body moves in a pure rotation about a fixed axis, every point of the body moves in a circle, then the angular
velocity is given by
w = 0k k is a unit vector in the direction of the axis of rotation.

Given the angular velocity of the body, one learns in introductory dynamics courses that the linear velocity of

any point on the body is given by the equation A
V=wXT w
A [N
w
R
Oxyz If we attach a body R: Since every point on the object experiences the same
r angular velocity and since each point of the body is in a fixed geometric

relationship to the body-attached frame, the angular velocity is a property of the
attached coordinate frame itself.



Differential kinematics

= relations between motion (velocity) in joint space

and motion (linear/angular velocity) in task space
(e.g., Cartesian space)”

= instantaneous velocity mappings can be obtained
through time derivation of the direct kinematics or
iIn @ geometric way, directly at the differential level
» different treatments arise for rotational quantities
» establish the link between angular velocity and
= time derivative of a rotation matrix

= time derivative of the angles in a minimal
representation of orientation



Linear and angular velocity
of the robot end-effector
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()
. . v
wy = 2,6, ®n = Zy-10,
- O-
(ﬂ]_ — 2091 ,"‘u
V== 7,d : r=(p, ¢)
P ®j = Z;-16) .
alternative definitions T — Rp
of the direct kinematics 000@ 1
V. 7 of the end-effector

= vV and o are “vectors”, namely are elements of vector spaces

= they can be obtained as the sum of single contributions (in any order)
= these contributions will be those of the single the joint velocities

= on the other hand, ¢ (and ¢) is not an element of a vector space

= a minimal representation of a sequence of two rotations is not obtained summing
the corresponding minimal representations (accordingly, for their time derivatives)

in general, ® # ¢
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Finite and infinitesimal translations

= finite Ax,Ay,Az or infinitesimal dx, dy, dz translations
(linear displacements) always commute

Az
\ -

v <

i

y same final
position
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Demonstration 1
on the black board
after the slide

initial
orientation

90°

Oz

Finite rotations do not commute

example
Z r'y
(I)x - 900
BERA Y,
X
mathematical fact: o is
NOT an exact differential _form . by = 90°
(the integral of ® over time
depends on the integration path!)
» Z y=
' 7
Xy
ox = 90 different final
. orientations!

"

L

Y

note: finite rotations still commute
when made around the same fixed axis
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Demonstration 2
on the black board

Ry(dx) =

Ry(¢y) =

Rz(dz) =

= R(d¢$) = R(doy, doy, ddz) =

Infinitesimal rotations commute!
= infinitesimal rotations d¢y, ddy, dd, around X, y, z axes

1 O 0
0 cos ¢y —Sin by
| 0 sin ¢x cos ¢x |

- cos ¢y O sindy
0 1 0
—sindy O cos ¢y |

_cos dz =Sin ¢z O
sing; cos¢; O

0 0 1

1

in any order

=1 + S(do)

1 0 0
I:> Ry(ddy) = | O 1 —doy
0 ddx 1
1 0 doy|
o> R{ddy)=| 0 1 0
—d¢y 0O 1 _
1 -dp, O
=) Rydéy)=|dp; 1 O
0 0 1
- - lecti
1 —do, dby second- and
dp, 1 —dix | < third-order
dpy dpy 1 | (nfpesmal
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In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetricl'l) matrix is a square matrix whose transpose equals its negative,

that is, it satisfies the conditionl2-P- 38

A skew-symmetric

— A'=-4

A skew-symmetric <=

Aji = —aij

skew-symmetric matrix

In terms of the entries of the matrix, if a;; denotes the entry in the 1-th row and j-th column, then the skew-symmetric condition is equivalent to

For example, the following matrix is skew-symmetric:

Example
0
A= | -2
1
because
0
—A=1 2
—1

2
0
4

17
—4
0

-2 1
0 4
-4 0
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Demonstration 3

4 2

Time derivative of a rotation matrix

let R = R(t) be a rotation matrix, given as a function of time
since I = R(t)RT(t), taking the time derivative of both sides yields
0 = d[R(t)RT(t)]/dt = dR(t)/dt RT(t) + R(t) dRT(t)/dt
= dR(t)/dt RT(t) + [dR(t)/dt RT(t)]" Askew-symmetric <> AT =~
thus dR(t)/dt RT(t) = S(t) is a skew-symmetric matrix

let p(t) = R(t)p’ a vector (with constant norm) rotated over time

comparing

dp(t)/dt = dR(t)/dt p’ = S(D)R(Y) p* = 5(t) p(t)
dp(t)/dt = o(t) X p(t) = S(a(t)) p(t)

we get S = S(w)
R = S(w) R

=)

S(w) = RRT
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Example
Time derivative of an elementary rotation matrix

1 0 0
Rx(9(1)) = | 0 cos ¢(t) —sin ¢(t)
0 sin¢(t) cos(t)

: .10 0 0 1 0 0
Rx(0) R'x(¢) =¢ | 0 —sind —cos ¢ 0 cos¢ sind
O cos¢ —sing || O —sind cos¢ |

q —
- ¢ = S((D) S = W 0 — Wy
0_

l i _u{.f"y f.«LJI 0 ]

0
= |0
0

-0 O

o O<
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@Y ...  S(t): physical interpretation.

p(t) = w(t) x R(t)p’.

Therefore, the matrix operator $(t) describes the vector product between the vector w and the
vector R(t)p'.

The matrix S(t) is so that its symmetric elements with respect to the main diagonal represent
the components of the vector w(t) = [w:w,w:]" in the form:

0w, w, | We can rewrite
S=]w 0 —ws. R(t)=S(t)R(t) > R=S(w)R
Wy wg 0 |
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Linear and angular velocity
of the robot end-effector

®y = 2,0, ®n = Zy16,

- O~
o1= 8 \“ﬁ-\‘\@u
V3= 22(:.13 : r= (p, ¢)

®j = 2416,
alternative definitions T — { R P}

of the direct kinematics © | nan: 1
of the end-effector

N
N
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Robot Jacobian matrices

= analytical Jacobian (obtained by time differentiation)
P . D _ afrﬁ) . :
r—{(b}— i(s) - r_{(i)J_ aq q =J(9)q
= geometric Jacobian (no derivatives)

v p Ji(q) | - .
= = =]
BRI

= in both cases, the Jacobian matrix depends on the
(current) configuration of the robot



Analytical Jacobian of planar 2R arm

direct kinematics
rpx=lici+ ey

r< Py=lisi+1sp

Lo =g+ q
" [l ] '] ' l—ﬁ
Px=-11519: - s12(q: + Qo) -lisi-bhs;,  -lsyy
py=liciqs + ;¢ (q1 + ) m) J(q)=| hathc Loyl
¢ =0, =q; + 1 1
\ p,
here, all rotations occur around the same given r; this is a 3 x 2 matrix

fixed axis z (normal to the plane of motion)



D) Analytical Jacobian of polar robot
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' 3

Pzt
direct kinematics (here, r = p)

Px =q3 C ¢4 A
Py =03 C;S; > f(q)

p,=d; +0ds3s; )

Py

-
-

qr e i/ taking the time derivative

..................................... Craat

Px

. “Q3CS1 G35C GG | _
V=p=| 03¢ -03581 &Sy [q=1J(q)q
0 dsC;, S

of(q)
oq

,

>
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Superposition principle

This article is about the superposition principle in linear systems. For other uses, see Superposition (disambiguatior).

The superposition principle [l also known as superposition property. states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each
stimulus individually. So that if input A produces response X and input 8 produces response ¥ then input (A + B) produces response (X + ¥).

A function F(x) that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties; additivity and homogeneity

F(z) + x3) = F(zy) + F(z3) Additivity
Flaz) = aF(z) Homogeneity
for scalar a.

Rotation




D) e Geometric Jacobian ey and sngue velocy

ity g e_ R oy
3 = 719, Op = Zp-1Y,
(Generalizing of n-dof) .- %&% “
v3=22&3 (ﬂi=2i-1éi r=1{p, |
always a 6 x n matrix i o e dret kpamas 1 {agaﬂ

W

|
end-effector {VE} ING) G = [Ju(q) J,_n(q)} CI1

instantaneous = :
velocity Ja(q) Jar1(q@) -+ Jan(Q) qn

ve = 11(9) &®..+ Jn(q) dn o = Ja1(q) q; ..+ Ian(q) qn

contribution to the linear contribution to the angular
e-e velocity due to g, e-e velocity due to g,




[ T— Velocity composition rule.

Generic approach for two frames
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Let s consider the coordinate transformation of a point P from Frame 1 to Frame 0O given by
p’ = o} + Rip".

Differentiating with respect to time and
using R = S(w)R. €S

p’ = 6% + R%' + Ryp": ;

p’ =0} + Rip' + S(wi)R|p"

Expressing  R(p' by r! p’ =0+ Rip" +wi xr




Velocity composition rule
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.0 -0 0.1 0 0
P =0, T Iyp +w; X1y

1 2 3
z We set :

Rp' by 19

1.
1- Linear Velocity of the origin O, of x,y,z, respect to x,Y,z,

2- Linear Velocity of the vector P respect to x,y,z, ( =0 because P! is
fixed respect to x,y,z,) p' = 0.

0

- () - 0 0

3- Linear Velocity of the point P respect to x,y,z, p
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The joints before the it prismatic joint are considered
fixed, while the one after the i prismatic joint are
considered as a single rigid body

Ji(9) él] = Ziyq ai

- S Em =
-

Prismatic
Joint jth

Ju(q) C.li Ziq di

Jni(9) éli 0




i ...  Geometric Jacobian Computation
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The joints before the it rotational joint are considered
fixed, while the one after the i*" rotational joint are

considered as a single rigid body

Rotational
Joint jth

Ji(a) q

(Zi-1 X Pi-1E) éi

SR,
Jni(9) G;

Zi1 6,
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Expression of geometric Jacobian

-

-) Ve | _ | J(a) g = Ju(@) - J(@) || R
| OF Ja(q) Jar(q) - Jan(9) dn
prismatic revolute
i-th joint I-th joint
Jui(q) Zi-1 Zi-1 X Pi-1,E
Jni(9) 0 Zi-1

Z.1 = "Ry(qy)..."?R;-1(qi-1) {%]

Pi-1e = Po,e(d1s-+-/9n) = Po,i-1(d1s---/Gi-1)

Y

"y

this can be also
computed as

~ OPo e
- oq

all vectors should be
expressed in the same
reference frame
(here, the base frame RF;)
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Zg X Poe

Zy

Example: planar 2R arm

DENAVIT-HARTENBERG table

Z; X Pie

Zy

UAZ

jOint a di ai ei
1 0 |1 d1
2 0 1, 4z
Cl = S]_ 0 |1C1
Sq Cy 0 |151 - pO']'
0 0O 1 0
0 0 0 1 P1,E = PoE -~ Po
Cz -Siz 0 e+ Iy
s € 0 s+ bsp [ Poe
0 0 1 0
0 0 0 1




Geometric Jacobian of planar 2R arm

- |151- 1S, - s,
lic1+ ey l,cqn

note: the Jacobian is here a 6 X 2 matrix,
thus its maximum rank is 2

|

at most 2 components of the linear/angular
. . . compare rows 1, 2, and 6
end-effector velocity can be independently assigned with the analytical Jacobian




Video from Kevin Lynch
Instructional

Vil | sEiT1386
https://www.youtube.com/watch?v=vjlgTvnQpBs

[ .|rl. ] ..”f}']' E n.:l:-:ll

fa

Vi = .f[l'i"]fi'

Given 0, find Viip-
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B Acceleration relations (and beyond...)

Higher-order differential kinematics

= differential relations between motion in the joint space and motion in
the task space can be established at the second order, third order, ...

= the analytical Jacobian always “weights” the highest-order derivative

!

velocity r=7J4{q) q Y matrix function N,(q,q)

acceleration  r=1(q) q + J(q) q

jerk r'=3(q) g +23(q) g + j;(s) q

snap T = 1(aq)q + ... matrix function N3(q,c':],:::i)

= the same holds true also for the geometric Jacobian J(q)



The end!
DD L A 1L

Thank you for your Attention!!!

Any Questions?




