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The principle of virtual work states that in equilibrium the virtual work of
the forces applied to a system is zero. Newton's laws state that at

equilibrium the applied forces are equal and opposite to the reaction, or
constraint forces.

This means the virtual work of the constraint forces must be zero as well.

principle of virtual work at equilibrium =2 (dW=dF dx)=0

The principle of virtual work had
always been used in some form
since antiquity in the study of
statics




[ ]
UNIVERSITAT Statlcs * We use a new notation
i} HEIDELBERG [ ]

S 1386 Jp=J,

Geometric Jacobian phve] (@],
(Generalizing of n-dof) e )| Ia(9)

In (2) Jpis the (3 x n) matrix relating the contribution of the joint veloc-
ities q to the end-effector linear velocity p,., while in (3) Jpo is the (3 x n)
matrix relating the contribution of the joint velocities g to the end-effector
angular velocity w,.



Statics:
Geometric Jacobian
(Generalizing of n-dof)

In compact form.

v, = {p] — J(q)q

w e

which represents the manipulator differential kinematics equation. The (6 xn)
matrix J i1s the manipulator geometric Jacobian

J—[JP

JO

which in general i1s a function of the joint variables.
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It determines the relationship between the generalized forces applied to the end-
effector and the generalized forces applied to the joints

Let  denote the (n x 1) vector of infinitesimal joint torques and y the (m x 1)
vector of infinitesimal end effector forces and torques where m is the

dimension of the operational space of interest.

Let’s apply the principle of virtual work (dW=dF dx)=0

As for the joint torques: AW, =11dgq.
As for the end-effector forces:  dW. = f!dp, + pulw.dt.

Ve = PP] =J(q)qg J= {Jp] - AW, = f.Jp(q)dg + pl Jo(q)dg
o Jo =~ J(q)dq

v, =[fl pl"
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SW. =711dq
W, =~LJ(q)dq.

According to the principle of virtual work, the manipulator is at static equilibrium if and

onlyif . i
) UT — H,.} 74 q.

5q = vl J(q)iq. r=J"(q),

the relationship between the (m) end effector forces/torques and the (n) joint
torques is established by the transpose of the manipulator geometric
Jacobian.
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given a matrix J: m x n (m rows, n columns)
= rank p(J) = max # of rows or columns that are linearly independent
= p(J) <min(m,n) (if equality holds, J has “full rank™)
= if m = n and J has full rank, J is “non singular” and the inverse J1 exists
= p(J) = dimension of the largest non singular square submatrix of J

s range R(J) = vector subspace generated by all possible linear
combinations of the columns of J <—— also called "image” of ]

RA)={veR":3FEc R, v=1]E&}
= dim(RQ)) = p(J)
= Kkernel X(J) = vector subspace of all vectors & € R" such that J°¢ = 0
= dim(X(J)) = n - p(J) T~ also called “null space” of J
« [R() + RO = R |e [RAT) + 8A) = R |

= sum of vector subspaces V, + V, = vector space where any element v can be
writtenasv = vy + v,, withv; e V4, v, € V5




Jacobian: decomposition of subspaces
Kinematics
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v. = J(q)q
Space of the end

/-‘ J \ effector velocities V,

Space of the joint
velocities q

Ve
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= p(J) =p(3(q)), RA) = RA(Q)), X(AN)= RA"(q)) are locally defined, i.e.,
they depend on the current configuration g

= R(J(q)) = subspace of all "generalized” velocities (with linear and/or
angular components) that can be instantaneously realized by the robot
end-effector when varying the joint velocities at the configuration g

= if J(q) has max rank (typically = m) in the configuration q, the robot
end-effector can be moved in any direction of the task space R™m

= if p(J(q)) < m, there exist directions in R™ along which the robot end-
effector cannot move (instantaneously!)

= these directions lie in X(J7(q)), namely the complement of R(J(q)) to the
task space R™, which is of dimension m - p(J(q))

= when NX(J(q)) # {0}, there exist non-zero joint velocities that produce
zero end-effector velocity (“self motions”)

= this always happens for m<n, i.e., when the robot is redundant for the task
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In fact, the effect of ¢, is to generate internal motions of the structure that do not
not change the end-effector position but may allow, for instance, manipulator

reconfiguration into more dexterous postures for execution of a given task.




Ty Jacobian: decomposition of subspaces
Statics

T=J"(q).
RAT) + X(I) = R" R(I) + R(IT) = R™

Space of the joint torques Space of the end effector
forces/torques
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Kinetostatic Duality

space of space of
joint velocities task (Cartesian)

. D velocities

wn Q.
g 5
al ®RQ) +x@)=R" R() + XA =R™ 15
E o
= 3
i space of
space o task (Cartesian)
joint torques forces

(in a given configuration q)
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The Null Space N(J) represents in this
case those solutions of joint kinematics
which do not produce any motion at the
end effector.

D Kineto-Statics Duallty (anOther nOtatiOn)

T =J"(q).

7, cR"

The Null Space N(JT) represents in this
case those solutions of end effector
forces which dot not produce any
torques at the joints.
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Kinematic singularities

configurations where the Jacobian loses rank
<> loss of instantaneous mobility of the robot end-effector

for m = n, they correspond to Cartesian poses at which the number of
solutions of the inverse kinematics problem differs from the “generic” case

“in” a singular configuration, we cannot find a joint velocity that realizes a
desired end-effector velocity in an arbitrary direction of the task space

“close” to a singularity, large joint velocities may be needed to realize
some (even small) velocity of the end-effector

finding and analyzing in advance all singularities of a robot helps in
avoiding them during trajectory planning and motion control
= when m = n: find the configurations q such that det J(q) = 0
= when m < n: find the configurations q such that all m x m minors of J are
singular (or, equivalently, such that det [J(q) JT(q)] = 0)

finding all singular configurations of a robot with a large number of joints,
or the actual “distance” from a singularity, is a hard computational task
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Singularities of planar 2R arm

direct kinematics
Px=lici+ 1, ¢y

py=1lis; +1;sp,

analytical Jacobian

- 11S1- 1815 - 1Sy,

b= Lo he Lol la=)aa | det)(@) =lbs,

= singularities: arm is stretched (g, = 0) or folded (q, = =)

= singular configurations correspond here to Cartesian points on the
boundary of the workspace

= iN many cases, these singularities separate regions in the joint space
with distinct inverse kinematic solutions (e.qg., “elbow up” or “"down”)



HE\ | UNIVERSITAT
1% | HEIDELBERG

W B Singularities of polar (RRP) arm

direct kinematics
Px = Q3 C; C4
Py = (3 G5

p,=d; +Qzs;

analytical Jacobian
[ -Q3$1C; -0sCiS;  CiCp |
p=| d3¢iC -G5S Si1€ | q=1J(q)q
0 4sC2 S2

= singularities
s E-E is along the z axis (g, = £n/2): simple singularity = rank J = 2
= third link is fully retracted (q; = 0): double singularity = rank J drops to 1

= all singular configurations correspond here to Cartesian points internal
to the workspace (supposing no limits for the prismatic joint)
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To find the singularities of a manipulator is of great interest for the following reasons:

a) Singularities represent configurations at which mobility of the structure
1s reduced, 1.e., 1t 1s not possible to 1mpose an arbitrary motion to the
end-effector.

b) When the structure is at a singularity, infinite solutions to the inverse
kinematics problem may exist.

c) In the neighbourhood of a singularity, small velocities in the operational
space may cause large velocities in the joint space.
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When v.and Jacobian J are given (for a given configuration q), it is desired to find the
solutions ¢ that satisfy the linear equation v. = J(g)g and minimize the quadratic
cost functional of joint velocities.

Minimization of the joint velocity is required for the singular position where the robots
assume high speed at the end effector for low joint velocity.

' Wg,st Singfg!arity —
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Inversion of differential kinematics

= find the joint velocity vector that realizes a desired end-
effector “generalized” velocity (linear and angular)

J square and

generalized velocity :
non-singular

v =1q)q

q=7J'q)v

= problems
= Near a singularity of the Jacobian matrix (high q)
= for redundant robots (no standard “inverse” of a rectangular matrix)

in these cases, "more robust” inversion methods are needed



Singularity Decoupling
(1) Anthropomorphic Arm

https://www.youtube.com/watch?v=zIGCurgsqg8

https://www.youtube.com/watch?v=BJnZvwAEQPY

SINGULARITY L‘;| gﬂ:ﬂj

roboticsbook.com
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Behavior near a singularity

)

T wosos m - problems arise only when
\\ commanding joint motion by
Y \| / | inversion of a given Cartesian
\.:I—_-:a R motion task
. it here, a linear Cartesian
| || trajectory for a planar 2R robot
4N | » = there is a sudden increase of
| \ ‘ the displacement/velocity of the
// b e @ first joint near 6,=- = (end-
I Tt effector close to the origin),
\ “ o despite the required Cartesian
N / displacement is small

(b)
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Simulation results

planar 2R robot in straight line Cartesian motion
q=JYq)v regular case
actual Cartesian path
2 - 2
15 // : R N 15
' dnd 1
. | N‘w |
E 0 [ | E 0O
05\ -0.5
B ""‘-.\\ y / -
-15 \\\\ h o 4 15
R —-L;.-;.i__ 0 05‘ 1 15 2 2 5 1 s o0 os 1
% {m)

a line from right to left, at a=170° angle with x-axis,
executed at constant speed v=0.6 m/s for T=6 s
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i) Simulation results

planar 2R robot in straight line Cartesian motion

avolution of joint angles evolution of joint velociies
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planar 2R robot in straight line Cartesian motion

qg=J3%q)v close to singular case

actual Cartesian path

2 — . 2
7 HH“\
15 g -, 15
b : \\
1 ; N 1
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end | '-
_ , start
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a line from right to left, at a=178° angle with x-axis,
executed at constant speed v=0.6 m/s for T=6 s
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of joint angles avolution of joint valooities
. : . v .
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Simulation results

planar 2R robot in straight line Cartesian motion

qg=Jq)v

actual Cartesian path

with joint
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close to singular case
velocity saturation at V,=300°/s
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a line from right to left, at «=178° angle with x-axis,
executed at constant speed v=0.6 m/s for T=6 s



path at
a=178°

close to
singular

case T«
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Simulation results

planar 2R robot in straight line Cartesian motion

evolution of |oiml angles
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, A
min H =

1
‘112 . 2
— + —||[Jg — v||<. X 20

= JDLS

/
g=\pn+JE 2Ty ZJT (N + JJTY)" Dy

equivalent expressions, but this one is more convenient in redundant robots!

= inversion of differential kinematics as an optimization problem

= function H = weighted sum of two objectives (minimum error norm on
achieved end-effector velocity and minimum norm of joint velocity)

= A = 0 when “far enough” from a singularity

= with A > 0, there is a (vector) errore (=v—-Jg) in executipg the
desired end-effector velocity v (check that ¢ =1 (Mm+ JJT)_ v 1), but the
joint velocities are always reduced (“damped”)

= Jp s can be used for both m = n and m < n cases
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planar 2R robot in straight line Cartesian motion

a comparison of inverse and damped inverse Jacobian methods
even closer to singular case

q=17Jq)Vv

actual Cartesian path
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a line from right to left, at «=179.5° angle with x-axis,
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actual Cartesian path
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executed at constant speed v=0.6 m/s for T=6 s
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planar 2R robot in straight line Cartesian motion

: - th at .
q=Jq)v ais-_ing?so q = Jpis(q) v

E o
=0.5
S
=1.5F
] 1
-2 1.5 1 0.5 0 0.5 1 1.5 2
here, a very fast a completely different inverse solution,
reconfiguration of around/after crossing the region

first joint ... close to the folded singularity
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planar 2R robot in straight line Cartesian motion
11 s
q=17J%(q)Vv q = Jpis(q) Vv

q (deg)
q (sag)

smooth
200 g o0y JOINt motion
ottt | ettt ~with limited
joint velocities!

extremely large ™ s
peak velocity

of first joint!! §
H
I8 | S
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planar 2R robot in straight line Cartesian motion
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=J I(Q) Vv DLS(q) Vv

% 10 4 niodm of Cartssian posilion emor mofm of Cariesian Pﬂ’lmﬂ:l‘l Birar
\ error (25 mm) —— > ﬂ
1 when crossing ..
E | increased the singularity,
e | numerical |later recovered by ****
'"teegrﬁg'ﬁ'“" feedback action
‘ | ) v = v+Ke
0.5 (3. 10 B) ( ) 0.005
UU 1 2 EJ 4 5- l; nﬂ' 1 F i 4 H B
Lis) Lish
. minimum singular walue of undamped and damped Jacobian (sguared) evolution of damping factor
minimum s
singular _ | .
valge of £ oas) ‘damping factor
I and AI+2TT 5 ¢ ). is chosen
T 0z non-Zero
Y only close to
they differ only g i} . singularity!
when damping ’ e |
factor is non-zero " v

tis} tis}
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Pseudoinverse method

a constrained optimization (minimum norm) problem

=4

: L.
mg,-mH = EHqH2 such that Jg-v =0

solution

q = I

« if v € R(.J), the constraint is satisfied (v is feasible)

. 1.2
min H = - ldl

S = {q €ER": ‘Jq —v‘ is minimum}

pseudoinverse of ]

= else Jqg = v, where@minimizes the error ||.Jq — v||

orthogonal projection of v on R(.J)



Properties of the pseudoinverse

it is the unique matrix that satisfies the four relationships

s JJPT =g JiJJt = Jt
(P =g (JIHT = gt

s ifrank p = m = n: Jh =71
n ifp=m<n; Jﬂ:JT(JJT)_1

it always exists and is computed in general numerically
using the SVD = Singular Value Decomposition of J

(e.g., with the MATLAB function pinv)



ey Numerical example

£ | ZUKUNFT

direct kinematics
Px =l ¢+ 1 ¢y

P, =15 + 1,5

v

X
analytical Jacobian

- = |151' |2512 = |2512 - . ' _

p = { et b el la=)ag | det)a) =libs,

Jacobian of 2R arm with |; =1, =1and q, = 0 (rank p = 1)

- —281 —51

J =
2(31 C1
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Jacobian of 2R arm with |; =1, =1and g, =0 (rank p = 1)

P — —281 —51 ]u — l — —281 2(3]_
2(31 g 5 —d8] C1
q == 4 8 N(TT)

Is the minimum norm
joint velocity vector that
realizes v

L J



The end!
—

Thank you for your Attentionl!l

Any Questions?




