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The goal of trajectory planning is to generate the reference inputs to the motion control
system which ensures that the manipulator executes the planned trajectories.

The user typically specifies a number of parameters to describe the desired trajectory.
« Planning consists of generating a time sequence of the values attained by an interpolating function
(typically a polynomial) of the desired trajectory

techniques for trajectory generation,

1. in the case when the initial and final point of the path are assigned (point-to-point motion),

2. inthe case when a finite sequence of points are assigned along the path (motion through a
sequence of points).
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ROBOTIC CONTROLLER SCHEME

l ENVIRONMENT E

EXTERNAL SENSORS

l

task planner*

*
CONTROLLER

trajectory planner*

* = CODE IMPLEMENTATION

INTERNAL SENSORS

robot action described
as a sequence of poses reference profile/values
or configurations =) TmE£J€§ \ =) (continuous or discrete)

(with possible exchange for the robot controller
of contact forces)




e Path and Trajectory

gl/e/ | zukunrFT
7 | sEIT1386

The minimal requirement for a manipulator is the capability to move from
an initial posture to a final assigned posture.
The transition should be characterized by motion laws requiring the actuators to exert joint

generalized forces which do not violate the saturation limits and do not excite the typically
modelled resonant modes of the structure.

It is then necessary to devise planning algorithms that generate suitably smooth trajectories.
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D e Trajectory definition

1. define Cartesian pose points (position+orientation) using the teach-box

2. program an (average) velocity between these points, as a 0-100% of a
maximum system value (different for Cartesian- and joint-space motion)

3. linear interpolation in the joint space between points sampled from the
built trajectory

examples of additional features

a) over-fly Ap—=sB  b) sensor-driven STOP c) circular path
D through 3 points

main drawbacks

m semi-manual programming (as in “first generation” robot languages)
m |imited visualization of motion

=) a mathematical formalization of trajectories is useful/needed



Some typical trajectories
= Point-to-point Cartesian motion with an intermediate point

Straight lines as Cartesian path Interpolation with Bezier curves
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o Some typical trajectories

Square path at constant speed Square path with
trapezoidal speed profile



Joint and Cartesian trajectories
= assigned task: arm reconfiguration between two inverse
kinematic solutions associated to a given end-effector pose

= jnitial and final configuration

* same Cartesian pose (no change!):
the motion cannot be fully specified in
the Cartesian space

» to perform this task, the robot should
leave the given end-effector pose and
then return to it
here n=m=6

(8 IK solutions) * a self-motion could be sufficient

- if the robot starts in a singularity
- if there is (task) redundancy (m<n)

for “simple” manipulators (e.g., all industrial robots) and m=n, the execution
of these tasks will require the passage through a singular configuration



Joint and Cartesian trajectories
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= a reconfiguration task (or... passing through singularity)

three-phase trajectory: ~ single-phase trajectory
circular path + self-motion + linear path in the joint space (no stops)



Ty Path and Trajectory
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Trajectory 6(t), t € [0,7]

Path 6(s), s € [0,1]

(1)

A path denotes the locus of points in the joint space, or in the operational space, which the manipulator

has to follow in the execution of the assigned motion; a path is then a pure geometric description of
motion.

A trajectory is a path on which a timing law is specified, for instance in terms of velocities and/or
accelerations at each point

A trajectory planning algorithm are the path description in terms of time sequence of the values attained
by position, velocity and acceleration.



Path and Traj ectory

Motion P d(t)
Interaction Fd(t)

TRAJECTORY <
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Trajectory planning
operative sequence

. — TASK planning

= sequence of pose points (“knots”) in Cartesian space -1
—" interpolation in Cartesian space

r - Cartesian geometric path (position + orientation): p = p(s) -1
O c —" path sampling and kinematic inversion
45"-% . w "o Ly
T 5 = sequence of “knots™ in joint space —y
s E ’,.—-- interpolation in joint space

= . geometric path in joint space: g = g(1)

additional issues to be considered in the planning process

» obstacle avoidance
» on-line/off-line computational load
= sequence @) is more “dense” than @
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p = p(s)
q=q(r)

Example
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Joint space
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Figure (Left) A 2R robot
center) A straight-line path in
of the end-effector in task space

: -
90 180 6; (deg)

with joint limits 0° < 6; < 180°, 0° < 3 < 150°. (Top
joint space and (top right) the corresponding motion
(dashed line). The reachable endpoint configurations,

subject to joint limits, are indicated in gray. (Bottom center) This curved line in joint

space and (bottom right) the ¢

orresponding straight-line path in task space (dashed

line) would violate the joint limits.
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... Joint Space Trajectories

A manipulator motion is assigned in the operational space in terms of trajectory parameters such as:
 the initial and final end-effector pose,

« possible intermediate poses,

« and travelling time along particular geometric paths

— — If it is desired to plan a trajectory in the joint space,
Yot 6 | y Y. It is then necessary to resort to an inverse
Joint 5 | v kinematics algorithm:
Joint 4 | /
L) |  if planning is done off-line, or to directly measure
Joint 2 | >
the
Joint 1 | - :
[ - above variables,
200 -100 0 100 200 T 04 o6 T y(m)

Joint position(degrees) X (m)

 If planning is done by the teaching-by-showing
technique
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Example of teaching by demonstration
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https://www.youtube.com/watch?v=eJCMyrCm_VO
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The planning algorithm generates a function q(t) in respect of the
Imposed constraints.

In general, a joint space trajectory planning algorithm is required to have
the following features:

* the generated trajectories should be not computationally demanding,
* the joint positions and velocities should be continuous functions of time

 undesirable effects should be minimized, e.g., nonsmooth trajectories
Interpolating a sequence of points on a path.
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Via points-time-trajectory

In generating a trajectory we have to specify multiple constraints.
Usually are positions which are sequential VIA POINTS which must be reached in specific

time instants T;, in order to have a trajectory which responds to geometric and time
specifications



Interpolating trajectories by polynimials
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Third-order polynomial interpolation
with specified via times and velocities

‘:{ﬂ = ap + alf -+ ﬂ-gfg -+ ﬂ:;fg.

start start

These are example of two trajectories generated by 4 points and using third order
polynomials: to be noted that each point must be reached at a specific time and a specific

velocity. These constraints will give the conditions to determine the coefficients of the
polynomials.
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Path and timing law

= after choosing a path, the trajectory definition is completed by
the choice of a timing law

p=p(s) =-s=s(t) (Cartesian space)
g=q(h) =x=2n) (joint space)
= if s(t) = t, path parameterization is the natural one given by time

2
)
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= the timing law

= IS chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

= may consider optimality criteria (min transfer time, min energy,...)

= constraints are imposed by actuator capabilities (max torque, max
velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

e.g., in Cartesian oy dp e _ dpe dPp oo
space p(t) = ds ° p(t) = ds S+ ds? °



== Cartesian vs. joint trajectory planning
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= planning in Cartesian space
= allows a more direct visualization of the generated path
= obstacle avoidance, lack of “wandering”

= planning in joint space
s does not need on-line kinematic inversion

= issues in kinematic inversion

= q e q (or higher-order derivatives) may also be needed
= Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

= for redundant robots, choice among «"™ inverse solutions,
based on optimality criteria or additional auxiliary tasks
= Off-line planning in advance is not always feasible

= e.g., when interaction with the environment occurs or
sensor-based motion is heeded



) e Trajectory classification
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= space of definition
= Cartesian, joint

= task type
= point-to-point (PTP), multiple points (knots), continuous,
concatenated
= path geometry
= rectilinear, polynomial, exponential, cycloid, ...
= timing law
= bang-bang in acceleration, trapezoidal in velocity, polynomial, ...
= coordinated or independent

= motion of all joints (or of all Cartesian components) start and
ends at the same instants (say, t=0 and t=T) = single timing law

or

= motions are timed independently (according to the requested
displacement and robot capabilities) — mostly only in joint space



Relevant characteristics
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= computational efficiency and memory space
= e.g., store only the coefficients of a polynomial function

= predictability and accuracy
= VS. "wandering” out of the knots
= VS, “overshoot” on final position

= flexibility
= allowing concatenation of primitive segments
= over-fly

= continuity
= in space and/or in time
= atleast €', but also up to jerk = third derivative in time



A robot trajectory with bounded jerk
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No jerk: limitation




) e Trajectory planning in joint space
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= d=4q()intime orq=q(X) in space (then with A = A(t))
= it is sufficient to work component-wise (q; in vector q)

= an implicit definition of the trajectory, by solving a problem with
specified boundary conditions in a given class of functions

= typical classes: polynomials (cubic, quintic,...), (co)sinusoids,
clothoids, ...

= imposed conditions
= passage through points = interpolation
= initial, final, intermediate velocity (or geometric tangent for paths)
= initial, final acceleration (or geometric curvature)
= continuity up to the k-th order time (or space) derivative: class Ck

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!



L Cubic polynomial in space
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q(0) =qo || a(1) =q; [ 9'(0) = vo|| (1) = v; | «— 4 conditions
AQ =Q; — Qo
A =a,+ Aqlar3+bi2+ch +d
q(r) = do q[\_ J e [0.1]

" ol

4 coefficients =—> “doubly normalized” polynomial qy(2)

pn(l)=1= a+b+c=1

qn0) =0 = d=0
qn'(1) = dau/di|,—; = 3a + 2b + € = V4/Aq

qn'(0) = dan/di],=0 = € = Vo/Aq
special case: vy = v; = 0 (zero tangent)
dv(0)=0 < c=0

gv(l1)=1 < a+b=1 - a=-2
g(1)=0 < 3a+2b=0



< R - 09/‘
% [
2\ | UNIVERSITAT
i HEIDELBERG — —-—
|H 45/ | ZUKUNFT

SEIT 1386

three phases (Lift off, Travel, Set down) in a pick-and-place operation in time

r

92 q.(t) = 4th order polynomial
gt(t) = 3rd order polynomial
ds<(t) = 4th order polynomial

d: -« e J

o 14 coefficients

t[} tl tz tf
initial depart approach final

boundary conditions

d(t) = g0 qti) =qti") =a1 q(ty) = qt*) =92 q(tr) = gr } 6 passages

q(to) = q(t) = O q(to) = q(tr) = 0 } vel-::u:ity/dc‘;(l:?:Ie;cllzlr{aftlir::manI

a(ty) = at*) qt) =t i=12 F 4 continuity
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Oth
degree

Numerical examples

interpolating polynomial of degree 9
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i Ty Interpolation using SplineS

= problem

interpolate N knots, with continuity up to the second derivative
= solution

spline: N-1 cubic polynomials, concatenated so as to pass through N knots
and being continuous up to the second derivative at the N-2 internal knots

s 4(N-1) coefficients

= 4(N-1)-2 conditions, or
= 2(N-1) of passage (for each cubic, in the two knots at its ends)
= N-2 of continuity for first derivative (at the internal knots)

= N-2 of continuity for second derivative (at the internal knots)

= 2 free parameters are still left over
= can be used, e.g., to assign initial and final derivatives, v, and v

= presented next in terms of time t, but similar in terms of space A
= then: first derivative = velocity, second derivative = acceleration



g o Building a cubic spline
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q = 0(t) = {6(t), t e [t & + hJ} dn-1

a N e
Vy \q’k/ an
ql/\qu/'

b G T Cics1 Tn-1 T
——

time intervals hy

O(t)=aptagttap+ast t€[0,h] t=t-t (k=1,.. N-1)

continuity conditions O(hi) = 0s1(0)

; : k=1, .., N-2
for velocity and acceleration ' R 1o
R 6.(h) = B1(0)
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Properties of splines

= a spline (in space) is the solution with minimum curvature among all
interpolating functions having continuous second derivative

= for cyclic tasks (q; = qy), it is preferable to simply impose continuity of
first and second derivatives (i.e., velocity and acceleration in time) at
the first/last knot as “squaring” conditions

= choosing v; = vy = v (for a given v) doesn't guarantee in general the
continuity up to the second derivative (in time, of the acceleration)

= in this way, the first = last knot will be handled as all other internal knots
= a spline is uniquely determined from the set of data q;,...,qy,
Ny, ...y Dnay Vi, U

= in time, the total motion occurs in T = Zk he =ty- 4

= the time intervals h, can be chosen so as to minimize T (linear objective
function) under (nonlinear) bounds on velocity and acceleration in [0,T]

= in time, the spline construction can be suitably modified when the
acceleration is also assigned at the initial and final knots



) e A modification
handling assigned initial and final accelerations
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= two more parameters are needed in order to impose also the
initial acceleration «; and final acceleration oy

s two “fictitious knots” are inserted in the first and last original
intervals, increasing the number of cubic polynomials from N-1
to N+1

= in these two knots only continuity conditions on position,
velocity and acceleration are imposed

= two free parameters are left over (one in the first cubic and
the other in the last cubic), which are used to satisfy the
boundary conditions on acceleration

= depending on the (time) placement of the two additional knots,
the resulting spline changes



L == A numerical example
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= N = 4 knots (3 cubic polynomials)
= jointvaluesgq;=0,q,=21, q3=1/2, Qu=T
« atty=0,t,=2,t3=3,t,=5(thus, hy=2, h,=1, hy=2)
= boundary velocities vi = v4= 0

= 2 added knots to impose accelerations at both ends (5 cubic polynomials)
= boundary accelerations oy = o, = 0
= two placements: att;"=0.5andt,/=4.5(x), ort;"=1.5and t;” = 3.5 (»)

pos vel acc

T 30..
6 2 5t 20}
10
E 4 30 13 0
- \ ' | = Z2-10¢
” o 20}
0b—% * * X - _30}

0 1 Z 3 - b 0 1 2 3 4 5 0 1 2 3 4 5




The end!
—

Thank you for your Attentionl!l

Any Questions?




