

Motion-Trajectory Planning in <u>Cartesian Space</u>

Recalling trajectories in the joints space (1)

 after choosing a path, the trajectory definition is completed by the choice of a timing law

$$p = p(s)$$
 $\Rightarrow s = s(t)$ (Cartesian space)
 $q = q(\lambda)$ $\Rightarrow \lambda = \lambda(t)$ (joint space)

- if s(t) = t, path parameterization is the natural one given by time
- the timing law
 - is chosen based on task specifications (stop in a point, move at constant velocity, and so on)
 - may consider optimality criteria (min transfer time, min energy,...)
 - constraints are imposed by actuator capabilities (max torque, max velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

e.g., in Cartesian
$$\dot{p}(t) = \frac{dp}{ds}\dot{s}$$
 $\ddot{p}(t) = \frac{dp}{ds}\dot{s} + \frac{d^2p}{ds^2}\dot{s}^2$

Cartesian vs. joint trajectory planning (2)

- planning in Cartesian space
 - allows a more direct visualization of the generated path
 - obstacle avoidance, lack of "wandering"
- planning in joint space
 - does not need on-line kinematic inversion
- issues in kinematic inversion
 - q e q (or higher-order derivatives) may also be needed
 - Cartesian task specifications involve the geometric path, but also bounds on the associated timing law
 - for redundant robots, choice among ∞^{n-m} inverse solutions, based on optimality criteria or additional auxiliary tasks
 - off-line planning in advance is not always feasible
 - e.g., when interaction with the environment occurs or sensor-based motion is needed

Trajectory planning in joint space

(3)

- q = q(t) in time or $q = q(\lambda)$ in space (then with $\lambda = \lambda(t)$)
- it is sufficient to work component-wise (q_i in vector q)
- an implicit definition of the trajectory, by solving a problem with specified boundary conditions in a given class of functions
- typical classes: polynomials (cubic, quintic,...), (co)sinusoids, clothoids, ...
- imposed conditions
 - passage through points = interpolation
 - initial, final, intermediate velocity (or geometric tangent for paths)
 - initial, final acceleration (or geometric curvature)
 - continuity up to the k-th order time (or space) derivative: class C^k

many of the following methods and remarks can be directly applied also to Cartesian trajectory planning (and vice versa)!

Trajectories in Cartesian space

- in general, the trajectory planning methods proposed in the joint space can be applied also in the Cartesian space
 - consider independently each component of the task vector (i.e., a position or an angle of a minimal representation of orientation)
- however, when planning a trajectory for the three orientation angles, the resulting global motion cannot be intuitively visualized in advance
- if possible, we still prefer to plan Cartesian trajectories separately for position and orientation
- the number of knots to be interpolated in the Cartesian space is typically low (e.g., 2 knots for a PTP motion, 3 if a "via point" is added) ⇒ use simple interpolating paths, such as straight lines, arc of circles, ...

Planning a linear Cartesian path

(position only)

GIVEN

$$p_i$$
, p_f , v_{max} , a_{max}
 v_i , v_f (typically = 0)

$$L = \|p_f - p_i\|$$

$$\frac{p_f - p_i}{\|p_f - p_i\|} = \begin{array}{c} \text{unit vector of directional} \\ \text{cosines of the line} \end{array}$$

$$s \in [0,1]$$
 setting $s = \sigma/L$, $\sigma \in [0,L]$ is the arc length (gives the current length of the path)

$$\dot{p}(s) = \frac{dp}{ds} \dot{s} = (p_f - p_i) \dot{s}$$
$$= \frac{p_f - p_i}{L} \dot{\sigma}$$

$$\ddot{p}(s) = \frac{d^2p}{ds^2} \dot{s}^2 + \frac{dp}{ds} \ddot{s} = (p_f - p_i) \ddot{s}$$
$$= \frac{p_f - p_i}{L} \ddot{\sigma}$$

Timing law with trapezoidal speed - 1

^{* =} other input data combinations are possible

Timing law with trapezoidal speed - 2

$$\sigma(t) = \begin{cases} a_{max} \ t^2/2 & t \in [0,T_s] \\ v_{max} \ t - \frac{v_{max}^2}{2 a_{max}} & t \in [T_s, T - T_s] \\ - a_{max} \ (t - T)^2/2 + v_{max} \ T - \frac{v_{max}^2}{a_{max}} \\ & t \in [T - T_s, T] \end{cases}$$

can be used also in the joint space!

Concatenation of linear paths

given: constant speeds v_1 on linear path AB v_2 on linear path BC

desired transition: with constant acceleration for a time ΔT

$$p(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} \quad t \in [0, \Delta T] \text{ (transition starts at } t = 0)$$

note: during over-fly, the path remains always in the plane specified by the two lines intersecting at B (in essence, it is a planar problem)

Time profiles on components

Timing law during transition

$$\frac{B - A}{\|B - A\|} = K_{AB}$$
unit vectors of direction cosines
$$\frac{C - B}{\|C - B\|} = K_{BC}$$

 $t \in$ [0, $\Delta T]$ (transition starts at t = 0)

$$p(t) = (v_2 K_{BC} - v_1 K_{AB})/\Delta T$$

$$p(t) = v_1 K_{AB} + (v_2 K_{BC} - v_1 K_{AB}) t/\Delta T$$

$$p(t) = A' + v_1 K_{AB} t + (v_2 K_{BC} - v_1 K_{AB}) t^2/(2\Delta T)$$
thus, we obtain a parabolic blending

Solution

(various options)

A numerical example

- transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from $v_1=1$ to $v_2=2$
- exploiting two options for solution (resulting in different paths!)
 - assign transition time: $\Delta T = 4$ (we re-center it here for $t \in [-\Delta T/2, \Delta T/2]$)
 - assign distance from B for departing: d₁=3 (assign d₂ for landing is handled similarly)

A numerical example

actually, the same vel/acc profiles only with a different time scale!!

Application example

plan a Cartesian trajectory from A to C (rest-to-rest) that avoids the obstacle O, with a \leq a_{max} and v \leq v_{max}

on $\overline{AA'} \to a_{max}$ on $\overline{A'B}$ and $\overline{BC'} \to v_{max}$ on $\overline{C'C} \to -a_{max}$ + over-fly between A" e C"

Other Cartesian paths

- circular path through 3 points in 3D (often built-in feature)
- linear path for the end-effector with constant orientation
- in robots with spherical wrist: planning may be decomposed into a path for wrist center and one for E-E orientation, with a common timing law
- though more complex in general, it is often convenient to parameterize
 the Cartesian geometric path p(s) in terms of its arc length (e.g., with
 s = Rθ for circular paths), so that
 - velocity: dp/dt = dp/ds · ds/dt
 - dp/ds = unit vector (||·||=1) tangent to the path: tangent direction t(s)
 - ds/dt = absolute value of tangential velocity (= speed)
 - acceleration: $d^2p/dt^2 = d^2p/ds^2 \cdot (ds/dt)^2 + dp/ds \cdot d^2s/dt^2$
 - $\|d^2p/ds^2\| = \text{curvature } \kappa(s) \ (= 1/\text{radius of curvature})$
 - $d^2p/ds^2 \cdot (ds/dt)^2 = centripetal$ acceleration: normal direction $n(s) \perp to$ the path, on the osculating plane; binormal direction $b(s) = t(s) \times n(s)$
 - d²s/dt² = scalar value (with any sign) of tangential acceleration

Definition of Frenet frame

 For a generic (smooth) path p(s) in R³, parameterized by s (not necessarily its arc length), one can define a reference frame as in figure

$$p' = dp/ds$$
 $p'' = d^2p/ds^2$ derivatives w.r.t. the parameter

$$t(s) = p'(s)/||p'(s)||$$

unit tangent vector

$$b(s) = t(s) \times n(s)$$

unit binormal vector

general expression of path curvature (at a path point p(s))

$$\kappa(s) = \|p'(s) \times p''(s)\|/\|p'(s)\|^3$$

Optimal trajectories

- for Cartesian robots (e.g., PPP joints)
 - the straight line joining two position points in the Cartesian space is one path that can be executed in minimum time under velocity/acceleration constraints (but other such paths may exist, if (joint) motion can also be not coordinated)
 - 2. the optimal timing law is of the bang-coast-bang type in acceleration (in this special case, also in terms of actuator torques)

- for articulated robots (with at least a R joint)
 - 1. e 2. are no longer true in general in the Cartesian space, but time-optimality still holds in the joint space when assuming bounds on joint velocity/acceleration
 - straight line paths in the joint space do not correspond to straight line paths in the Cartesian space, and vice-versa
 - bounds on joint acceleration are conservative (though kinematically tractable)
 w.r.t. actual ones on actuator torques, which involve the robot dynamics
 - when changing robot configuration/state, different torque values are needed to impose the same joint accelerations

Planning orientation trajectories

- using minimal representations of orientation (e.g., ZXZ Euler angles φ,θ,ψ),
 we can plan independently a trajectory for each component
 - e.g., a linear path in space ϕ θ ψ , with a cubic timing law \Rightarrow but poor prediction/understanding of the resulting intermediate orientations
- alternative method: based on the axis/angle representation
 - determine the (neutral) axis r and the angle θ_{AB} : $R(r,\theta_{AB}) = R_A^T R_B$ (rotation matrix changing the orientation from A to B \Rightarrow inverse axis-angle problem)
 - plan a timing law $\theta(t)$ for the (scalar) angle θ interpolating 0 with θ_{AB} (with possible constraints/boundary conditions on its time derivatives)
 - \forall t, $R_AR(r,\theta(t))$ specifies then the actual end-effector orientation at time t

A complete position/orientation Cartesian trajectory

- initial given configuration $q(0) = (0 \pi/2 \ 0 \ 0 \ 0)^T$
- initial end-effector position $p(0) = (0.540 0 1.515)^T$
- initial orientation

$$R(0) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

linear path for position

axis-angle method for orientation

- final end-effector position $p(T) = (0 \quad 0.540 \quad 1.515)^T$
- final orientation

$$R(T) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

the final configuration is NOT specified a priori

Axis-angle orientation trajectory

video

$$L = ||p_{\text{final}} - p_{\text{init}}||$$

= 0.763 [m]

$$\omega = r\dot{\theta} \rightarrow \|\omega\| = |\dot{\theta}|$$

$$\dot{\omega} = r\ddot{\theta} \rightarrow ||\dot{\omega}|| = |\ddot{\theta}|$$

$$p(s) = p_{\text{init}} + s(p_{\text{final}} - p_{\text{init}})$$

= $(0.540 \ 0 \ 1.515)^T + s(-0.540 \ 0.540 \ 0)^T$, $s \in [0,1]$

$$R_{\text{init}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = R_{\text{init}}^{T}$$

$$R_{\text{cons}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{\text{init}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = R_{\text{init}}^{T}$$

$$R_{\text{init}}^{T} R_{\text{final}} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$= Rot(r, \theta_{if})$$

$$R_{\text{final}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \qquad r = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \theta_{\text{if}} = \frac{2\pi}{3} \text{ [rad]} (= 120^{\circ})$$

coordinated

Cartesian motion with bounds

$$v_{max} = 0.4 \text{ [m/s]}$$

 $a_{max} = 0.1 \text{ [m/s}^2\text{]}$
 $\omega_{max} = \pi/4 \text{ [rad/s]}$
 $\dot{\omega}_{max} = \pi/8 \text{ [rad/s}^2\text{]}$

triangular

speed profile $\dot{s}(t)$ with minimum time T = 5.52 s

(imposed by the bounds on linear motion)

$$s = s(t), \ t \in [0, T]$$

$$R(s) = R_{\text{init}}Rot(r, \theta(s))$$

$$R(s) = R_{\text{init}}Rot(r, \theta(s))$$

$$\theta(s) = s\theta_{\text{if}}, \quad s \in [0,1]$$

Axis-angle orientation trajectory

Comparison of orientation trajectories Euler angles vs. axis-angle method

- initial configuration $q(0) = (0 \pi/2 \pi/2 0 -\pi/2 0)^T$
- initial end-effector position $p(0) = (0.115 \quad 0 \quad 1.720)^T$
- initial orientation

$$R(0) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

• initial Euler ZYZ angles $\phi_{ZYZ}(0) = (0 \pi/2 \pi)^T$

via a **linear path** (for position)

- final end-effector position $p(T) = (-0.172 0 1.720)^T$
- final orientation

$$R(T) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

• final Euler ZYZ angles $\phi_{ZYZ}(T) = (-\pi \pi/2 0)^T$

Comparison of orientation trajectories Euler angles vs. axis-angle method

$$R_{\text{init}} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \phi_{ZYZ,\text{init}} = \begin{pmatrix} 0 \\ \pi/2 \\ \pi \end{pmatrix}$$

$$R_{\text{final}} = -\begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \phi_{ZYZ,\text{final}} = \begin{pmatrix} -\pi \\ \pi/2 \\ 0 \end{pmatrix}$$

video

using ZYZ Euler angles

using axis-angle method

$$R_{\text{init}}^{T} R_{\text{final}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\Rightarrow r = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix},$$
$$\theta = \pi$$

video

Comparison of orientation trajectories Euler angles vs. axis-angle method

Comparison of orientation trajectories Euler angles vs. axis-angle method

Uniform time scaling

- for a given path p(s) (in joint or Cartesian space) and a given timing law $s(\tau)$ ($\tau=t/T$, T="motion time"), we need to check if existing bounds v_{max} on (joint) velocity and/or a_{max} on (joint) acceleration are violated or not
 - ... unless such constraints have already been taken into account during the trajectory planning, e.g., by using a bang-coast-bang acceleration timing law
- velocity scales linearly with motion time
 - $dp/dt = dp/ds \cdot ds/d\tau \cdot 1/T$
- acceleration scales quadratically with motion time
 - $d^2p/dt^2 = (d^2p/ds^2\cdot(ds/d\tau)^2 + dp/ds\cdot d^2s/d\tau^2)\cdot 1/T^2$
- if motion is unfeasible, scale (increase) time $T \to kT$ (k>1), based on the "most violated" constraint (max of the ratios $|v|/v_{max}$ and $|a|/a_{max}$)
- if motion is "too slow" w.r.t. the robot capabilities, decrease T (k<1)
 - in both cases, after scaling, there will be (at least) one instant of saturation (for at least one variable)
 - no need to re-compute motion profiles from scratch!

Numerical example - 1

- 2R planar robot with links of unitary length (1 [m])
- linear Cartesian path p(s) from $q_0=(110^\circ, 140^\circ) \Rightarrow p_0=f(q_0)=(-.684, 0)$ [m] to $p_1=(0.816, 1.4)$, with rest-to-rest cubic timing law s(t), T=1 [s]
- bounds in joint space: max (absolute) velocity v_{max,1} = 2, v_{max,2} = 2.5 [rad/s], max (absolute) acceleration a_{max,1} = 5, a_{max,2} = 7 [rad/s²]

Numerical example - 2

- violation of both joint velocity and acceleration bounds with T=1 [s]
 - max relative violation of joint velocities: $k_{vel} = 2.898 = max\{1, |\dot{q}_1|/v_{max,1}, |\dot{q}_2|/v_{max,2}\}$
 - max relative violation of joint accelerations: $k_{acc} = 6.2567 = max\{1, |\ddot{q}_1|/a_{max,1}, |\ddot{q}_2|/a_{max,2}\}$
- minimum uniform time scaling of Cartesian trajectory to recover feasibility

$$k = max \{1, k_{vel}, \sqrt{k_{acc}}\} = 2.898 \Rightarrow T_{scaled} = kT = 2.898 > T$$

Numerical example - 3

- scaled trajectory with T_{scaled} = 2.898 [s]
 - speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

The end!

Thank you for your Attention!!! Any Questions?

