) Motion-Trajectory Planning in Cartesian Space




Recalling trajectories in the joints space
(1)

= after choosing a path, the trajectory definition is completed by
the choice of a timing law

p=p(s) =-s=s(t) (Cartesian space)
g=q(h) =x=2n) (joint space)
= if s(t) = t, path parameterization is the natural one given by time
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= the timing law

= IS chosen based on task specifications (stop in a point, move at
constant velocity, and so on)

= may consider optimality criteria (min transfer time, min energy,...)

= constraints are imposed by actuator capabilities (max torque, max
velocity,...) and/or by the task (e.g., max acceleration on payload)

note: on parameterized paths, a space-time decomposition takes place

e.g., in Cartesian oy dp e _ dpe dPp oo
space p(t) = ds ° p(t) = ds S+ ds? °



L == Cartesian vs. joint trajectory planning (3
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= planning in Cartesian space
= allows a more direct visualization of the generated path
= obstacle avoidance, lack of “wandering”

= planning in joint space
s does not need on-line kinematic inversion

= issues in kinematic inversion

= q e q (or higher-order derivatives) may also be needed
= Cartesian task specifications involve the geometric path,
but also bounds on the associated timing law

= for redundant robots, choice among «"™ inverse solutions,
based on optimality criteria or additional auxiliary tasks
= Off-line planning in advance is not always feasible

= e.g., when interaction with the environment occurs or
sensor-based motion is heeded



) e Trajectory planning in joint space
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= d=4q()intime orq=q(X) in space (then with A = A(t))
= it is sufficient to work component-wise (q; in vector q)

= an implicit definition of the trajectory, by solving a problem with
specified boundary conditions in a given class of functions

= typical classes: polynomials (cubic, quintic,...), (co)sinusoids,
clothoids, ...

= imposed conditions
= passage through points = interpolation
= initial, final, intermediate velocity (or geometric tangent for paths)
= initial, final acceleration (or geometric curvature)
= continuity up to the k-th order time (or space) derivative: class Ck

many of the following methods and remarks can be
directly applied also to Cartesian trajectory planning (and vice versa)!

(3)



Trajectories in Cartesian space

= in general, the trajectory planning methods proposed in the
joint space can be applied also in the Cartesian space

= consider independently each component of the task vector (i.e., a
position or an angle of a minimal representation of orientation)

= however, when planning a trajectory for the three
orientation angles, the resulting global motion cannot be
intuitively visualized in advance

= if possible, we still prefer to plan Cartesian trajectories
separately for position and orientation

= the number of knots to be interpolated in the Cartesian
space is typically low (e.g., 2 knots for a PTP motion, 3 if a
“via point” is added) = use simple interpolating paths, such

as straight lines, arc of circles, ...



Planning a linear Cartesian path
(position only)

_ GIVEN
Pi L
Pis Pfs Vmaxs 9max
Vi, V¢ (typically = 0)
Pf
L= |ps- il
path parameterization Ps- Pi _ unit vector of directional
p(s) = pi + s (ps- py) I p¢ - pi| cosines of the line

s e [0,1] «—— setting s = o/L, o € [0,L] is the arc length
’ (gives the current length of the path)

. dp " " as dzp 12 dp T 'L
p(s) = === (P~ P P(s) = == 1o > (PP

Pe- Pi - _ PP -
- = = == 0O

L L



ot Timing law with trapezoidal speed - 1

| bang- coast- bang I
ama)( | I 4 given*: L, Vinax, Qmax
: find: T, T
t

= area of the
speed profile

=1 J,“

P\

Gl &
$

vmax (T - Ts) =L

a "coast” phase exists iff: L > V,2/@max

* = other input data combinations are possible
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) o Timing law with trapezoidal speed - 2

r
| |
D'(t) |7 amax : Amax t2/2 te [OITS]
|
t
| ‘ Vmaxz
o(t) = { Vmax t - =—— t e [T,T-T,
: < 2amax [ ]

max

L t e [T-T, T]
5(t) / X .
| | t
can be used also
Ts s T in the joint space! I

. |
o(t) ; \_Vmax
/: ;\ Vmaxz
! : t = dmax (t'T)Z/Z + Vinax T-
I
I
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it Concatenation of linear paths

B ="via point” ™ need to pass B- A

(and stop!) there

X(t)|
p(t) = | y(t)

20

= Kas
" B-A " unit vectors of
C-B direction cosines
Ic-8]

given: constant speeds v, on linear path AB

Vv, on linear path BC

desired transition: with constant acceleration for a time AT

t € [0, AT] (transition starts at t = 0)

note: during over-fly, the path remains always in the plane specified
by the two lines intersecting at B (in essence, it is a planar problem)



UNIVERSITAT

Time profiles on components

X(t) X(t)
/_ .
Vi Kag x
. AT t . t
v(t) | y(t) |
| f Vv Kgey
am— — Vi Kag,y t
. :' t . i
z(t) Z(t)
: v

| t KAB,E \1— Vs KBC,Z
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1) e Timing law during transition
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B-A
= KAE-
1B - Al |
unit vectors of
C-B ) direction cosines
fc-8]
x(t) t € [0, AT] (transition starts at t = 0)
p(t) = | (O = }
20

P(t) = (v, Kpe - Vi Kpg)/AT —‘ J >_’ P(t) = V; Kag + (V2 Kpc - Vi Kpp) t/AT

—
thus, we obtain a

parabolic blending
p(t) = A"+ vy Kagt + (Vo K - vy Kgg) t2/(2AT)



Solution
(various options)
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B - AF= dl KPB
Cr' B= dz KEC

C p(t) = A"+ vy Kpgt + (v Kge - vy Kag)t2/(2AT)

P(AT) = A"+ (AT/2) (Vi Kag + V2 Kge) = C

T -B + A+ (AT/2) (v4 Kng + Vo Kge) = C'- B
[®:> d; Kag + d; Kgc = (AT/2) (v; Kag + V5 Kge)

|::> ‘ d; = v, AT/2 I‘ d, = v, AT/2 I
Y oy ay " [AT = 2uv, b dy = dyvo/v |




A numerical example

SEIT 1386

» transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from v;=1 to v,=2
= exploiting two options for solution (resulting in different paths!)

= assign transition time: AT=4 (we re-center it here for t € [-AT/2, AT/2])
= assign distance from B for departing: d;=3 (assign d, for landing is handled similarly)

Carlesian path Cartesian path
10 10 .
g B C ] B C
L 1
T T
6 6 A’
= 5 = §
4 4
3 A 3t A
2 2
1 1
0 . 0
0 2 4 L B 10 0 2 4 6 B 10
x X
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I isec)
dapart at A’ = (1 B335, T 1006} and land &t C° » (5.5

-2 =15 =1 08 ] 1] 1 1.5 2
tisac)

-2 -1.8 = 0.8 o as 1 1.5 2

A numerical example
first option: .ﬁ]:fél (resulting in d,=2, d,=4)

second option: d;=3 (resulting in AT=6, d,=6
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actually, the same vel/acc profiles only with a different time scale!!
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2 Application example

plan a Cartesian trajectory from A to C (rest-to-rest)
that avoids the obstacle O, with a < a,., and v < V.,

add a via pnin.t B
B “sufficiently far” from O

on AA" > amc ONABandBC' = v,,, onCC - -a.,
+ over-fly between A” e C”
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Other Cartesian paths

circular path through 3 points in 3D (often built-in feature)
linear path for the end-effector with constant orientation

in robots with spherical wrist: planning may be decomposed into a path
for wrist center and one for E-E orientation, with a common timing law

though more complex in general, it is often convenient to parameterize
the Cartesian geometric path p(s) in terms of its arc length (e.q., with
s = RO for circular paths), so that

= velocity: dp/dt = dp/ds * ds/dt
= dp/ds = unit vector (||*||=1) tangent to the path: tangent direction t(s)
= ds/dt = absolute value of tangential velocity (= speed)

= acceleration: d?p/dt2 = d?p/ds? - (ds/dt)? + dp/ds - d?s/dt?
= ||d?p/ds?| = curvature «(s) (= 1/radius of curvature)

= d?p/ds?:(ds/dt)? = centripetal acceleration: normal direction n(s) L to the
path, on the osculating plane; binormal direction b(s) = t(s) x n(s)

=« d?s/dt? = scalar value (with any sign) of tangential acceleration
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) s Definition of Frenet frame
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= For a generic (smooth) path p(s) in R3, parameterized by s (not
necessarily its arc length), one can define a reference frame as in figure

p’ = dp/ds p” = d?p/ds?
derivatives w.r.t. the parameter

t(s) = p'(s)/ | p'(s) |

unit tangent vector

n(s) = p"(s)/||p"(s) ||
unit normal vector
(e osculating plane)

b(s) = t(s) x n(s)
unit binormal vector

= general expression of path curvature (at a path point p(s))

k(s) = |p'(s) x p"s)|I/ Ip(s) |13




e Optimal trajectories
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= for Cartesian robots (e.g., PPP joints)

1. the straight line joining two position points in the Cartesian space is one path
that can be executed in minimum time under velocity/acceleration constraints
(but other such paths may exist, if (joint) motion can also be not coordinated)

2. the optimal timing law is of the bang-coast-bang type in acceleration (in this
special case, also in terms of actuator torques)

= for articulated robots (with at least a R joint)

= 1. e 2. are no longer true in general in the Cartesian space, but time-optimality
still holds in the joint space when assuming bounds on joint velocity/acceleration

= straight line paths in the joint space do not correspond to straight line paths
in the Cartesian space, and vice-versa

= bounds on joint acceleration are conservative (though kinematically tractable)
w.r.t. actual ones on actuator torques, which involve the robot dynamics

= When changing robot configuration/state, different torque values are needed
to impose the same joint accelerations
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i Planning orientation trajectories

7~

A @ &(098

= using minimal representations of orientation (e.g., ZXZ Euler angles ¢,0,v),
we can plan independently a trajectory for each component

= e.g., a linear path in space ¢ 6 v, with a cubic timing law
= but poor prediction/understanding of the resulting intermediate orientations

= alternative method: based on the axis/angle representation

= determine the (neutral) axis r and the angle 6,5: R(r,0,5) = R4 R (rotation
matrix changing the orientation from A to B = inverse axis-angle problem)

= plan a timing law 6(t) for the (scalar) angle 6 interpolating 0 with 6,5 (with
possible constraints/boundary conditions on its time derivatives)

= Vt, R4R(r,0(t)) specifies then the actual end-effector orientation at time t
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" 3 A complete position/orientation
Cartesian trajectory

= initial given configuration g(0) =(0 =n/2 0 0 0 0)
= initial end-effector position p(0) = (0.540 0 1.515)7
= initial orientation
D @ 1
R(O)=[0 -1 0)
l. #° 9

linear path axis-angle method
for position ‘ for orientation

= final end-effector position p(T) = (0 0.540 1.515)"
= final orientation
1 0 0
R(T) = (0 0 1)
O —=1 B
= the final configuration is NOT specified a priori
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Axis-angle orientation trajectory

id coordinated
video Cartesian motion
with bounds
P Nt
~ I(I)p;g;l [m?mlt” Vimax = 0.4 [m/s]
o Amax = 0.1 [m/s?]
(‘.)max = /4 [rad/s]
w=18 - |lwll =8| Omax = 1/8 [rad/s’]
@=16 - ||lo|l = 6] g= triangular
speed profile $(t)
with minimum
| ; . timeT'=552s
p(S) = Pinit + S(Pfinal — Pinit) ('ngsﬁge?r' mgtitc))?\l;nds
=(0540 0 1.515)7 +s(-0.540 0.540 0)7, s € [0,1]
0 0 1 0 -1 0 s=s(t), t€[0,T]
Ruit=(0 -1 0)=REL, RinitRinar =0 0 -1
0 0 0 1 0 0 R(s) = R;yitRot(r, 0(s))
1 0 0 » 1— Rot(r, ;) . - 2
Rfinal = (0 0 1) s l A o= E = 120° 0(s) = s, s €101
Posel) ot r e 11 =g [rad](= 120°)
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Axis-angle orientation trajectory

Eo B L T el -alechsd velbeity

X =—

y=—

T . triangular
plannEd E 08 ¥ Prﬂﬁle fﬂr
motion of © . linear speed
Cartesian I'=552s

position ..
and velocity
| S gossm | = sy
N | = the robot joint velocity was commanded

Jomt 2 —_ by inversion of the geometric Jacobian
actual | - = auser program, via KUKA RSI interface

joint % at T, = 12 ms sampling time (one-way

motion - communication)
1 = robot motion execution is = what was
planned, but only thanks to an external

L R RS S — kinematic control loop (at task level)



A Comparison of orientation trajectories
Euler angles vs. axis-angle method

= initial configuration q(0) = (0 n/2 =/2 0 -m/2 0)T
= initial end-effector position p(0) = (0.115 0 1.720)

= initial orientation

0 @ 4
R(0) = (0 -1 O)
i gy
= initial Euler ZYZ angles ¢,y,(0) = (0 n/2 )T

x(T) y

- via a linear path (for position)
» final end-effector position p(T) = (-0.172 0 1.720)"
0 0 -1
R(T) = ( 0 -1 0 )
—~1 % U
= final Euler ZYZ angles ¢,y,(T) = (—n w/2 0)T

= final orientation
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Comparison of orientation trajectories
Euler angles vs. axis-angle method

Rgl;litRfina]
-1 0 0
0 =10 1 O
=’¢zrz,init=(7t/2) 0 0 -1
. 0
o A _1):
0 0 1 0
Riina) = 0 1 0 0=m
1 @& 0
—7T
= vz final = (”/ 2
0
video video

using ZYZ Euler angles using axis-angle method
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Comparison of orientation trajectories

Euler angles vs. axis-angle method

-l [N

£ o linear motion
as) only along the

0l / x-direction

planned

Cartesian . . . . . T
components o

of position :
and velocity “

-y : ; i : i i ; .
b u]

using ZYZ Euler angles

are-gflacior poston

E o4
T
02
T ] 3 4 5 8 7 Y
B [a]
T=6s
[ T
e ;

faster motion
time with the
axis-angle method
(imposed by the
previous bounds
on angular motion)

] 1 2 3 5 [ 7 [

']
]

using axis-angle method
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‘rbsinia Comparison of orientation trajectories
Euler angles vs. axis-angle method

el -sBacte orentalon wit TYZ Euber angies. " ard-sfipcios orniston with IYT Culer angies:

o=— : | y B = 0 (singularity of
B=—o \ | | the representation)
y=— | \ , | |
orientation

in terms of ZYZ . o

Euler angles . pre-planned | , by post-
offline ~ processing

z 3 0 5

-~ T~72s 0
actual

joint ) | ]
. E- T L &l
motion \ |

s S—

)

]

only three
joints move

gl i i L L i L i 4 2 i i ki
[ 2 3 & 5 L] 7 ] ] I r a 4 L L T a
e i e s

using ZYZ Euler angles using axis-angle method
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Uniform time scaling

for a given path p(s) (in joint or Cartesian space) and a given timing law
s(t) (z=t/T, T="motion time"”), we need to check if existing bounds v,
on (joint) velocity and/or a,., on (joint) acceleration are violated or not

= ... Unless such constraints have already been taken into account during the
trajectory planning, e.g., by using a bang-coast-bang acceleration timing law

velocity scales linearly with motion time
« dp/dt = dp/ds'ds/dt-1/T

acceleration scales quadratically with motion time
= d2p/dt?2 = (d?%p/ds?*(ds/dt)? + dp/ds-d2s/dt2)"1/T?

if motion is unfeasible, scale (increase) time T — KT (k>1), based on the
“most violated” constraint (max of the ratios |v|/v, . and |al/anax)

if motion is “too slow” w.r.t. the robot capabilities, decrease T (k<1)

= in both cases, after scaling, there will be (at least) one instant of saturation
(for at least one variable)

= No need to re-compute motion profiles from scratch!
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Numerical example - 1

= 2R planar robot with links of unitary length (1 [m])

= linear Cartesian path p(s) from q,=(110°, 140") = py=f(qy)=(-.684, 0) [m] to
p,=(0.816, 1.4), with rest-to-rest cubic timing law s(t), T=1 [s]

= bounds in joint space: max (absolute) velocity V. 1= 2, Vinax 2= 2.5 [rad/s],
max (absolute) acceleration a,,.x 1= 5, @pax 2= 7 [rad/s?]

.EITIEIXH3 [m!fs]

y P1
\ path length L=2.0518 [m]
1 q. f\ | zero initial and
. /}!ﬁ“i‘k‘\ final speed \
. :
Po R
. non-zero
(symmetric)
acceleration

Cubic spline

N
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Numerical example -2

= Vviolation of both joint velocity and acceleration bounds with T=1 [s]
= max relative violation of joint velocities: k.o = 2.898 = max{1, |q;|/Vmax.1» 192!/ Vmax2}
= max relative violation of joint : = 6.2567 = max{1, |9,|/amax.1s 192|/3max 2}

= minimum uniform time scaling of Cartesian trajectory to recover feasibility
k=max {1, Kie, VKacc } =2.898 = Topeq =kT =2.898>T

EvORlion Of ol sariabies _ wvririen oo e vekoerhes (brisl e T 8 15 i O o Adtelenaieen
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Numerical example - 3
= scaled trajectory with T.eq = 2.898 [s]

= speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

it By i o S (il ol B T o 2 BR) » ] (M (et e by & = 2 B9 sormaTmien on path (e s by sgeaned & - B HEE
L 3 . = = " 15 .

a2

™\

traced Cartesian pafh
and associated joint paths L N S |
remain the same! ? e | S ¥

waciuticn of ot seraties (ool izt bres T = O DN | - swchiicn of genl veicciias, caled by § = 2800 " arezhilar ol poin| mooskenaiions. weafed bry souseod b oo B 182

[

at least 1 instant of saturation!




The end!
—

Thank you for your Attentionl!l

Any Questions?




