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https://robotacademy.net.au/ Gravagne, lan A. y Walker, lan D., Manipulability, Force and Compliance
Analysis for Planar Continuum Manipulators, IEEE
Transactions on Robotics and Automation. No. 3, v. 18 (2002), p 263-273.



http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1019457&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D1019457
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' "generalized” vectors: may contain
linear and/or angular components

convention: generalized forces are
Z positive when applied on the robot

= ¢ = forces/torques exerted by the motors at the robot joints

= F = equivalent forces/torques exerted at the robot end-effector

= F_ = forces/torques exerted by the environment at the end-effector

= principle of action and reaction: ‘ Fo=-F \

reaction from environment is equal and opposite to the robot action on it
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Virtual displacements and works
dqn

E T

7 dq

|nFn|te5|maI (or “virtual”, i.e., satisfying all possible
constraints imposed on the system) displacements
at an equilibrium

- = without kinetic energy variation (zero acceleration)

No motion at the EE . .. . :
= without dissipative effects (zero velocity)

the “virtual work” is the work done by all forces/torques
acting on the system for a given virtual displacement
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T,dd, .
Pl_ _pT
t.dg; FT[UJ dJ— F''Jdq

13dq;

the sum of the “virtual works” done by all = principle of
forces/torques acting on the system = 0  virtual work

1 dqg — rt

wdt

ap } — Tqu — FT.]dq =0
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~ velocity ¢ generalized velocity v
(or displacement dq) (or e-e displacement [ w(‘_?f ])
in the joint space in the Cartesian space )
forces/torques T generalized forces F'
at the joints at the Cartesian e-e

W

the singular configurations
for the velocity map are the same p(J) = p(JT)
as those for the force map



Dual subspaces of velocity and force

summary of definitions
R(J)={ve R™:3Ge R Jj=v}
NI ={Fe R": J'F=0)}
R(J) +N(J') = R™

R(']T) = {r € IR" : 3F € IR"", J'p = T}
N(d)={d E€R" : Jg=10}
R(JTY + N(J) = R®
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Kinetostatic Duality

space of space of
joint velocities task (Cartesian)

. D velocities

wn Q.
g 5
al ®RQ) +x@)=R" R() + XA =R™ 15
E o
= 3
i space of
space o task (Cartesian)
joint torques forces

(in a given configuration q)



Velocity and force singularities

list of possible cases
p = rank(J) = rank(J") = min(m,n) r=J"(q).

. v, = J(q)q

n :

1. 0 = IM ReDUNDANCY 1. detJ 0

dJg#=0: Jg=0 N(J) = {0}
N(J") = {0} N(J") = {0}
. P < IM siNGULARITY 2. det ] = 0 sincutariTy

dq7#=0: Jg=0 3G #£0: Jg=0
3F#0: JIF=0| 3p20: JTF=0
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https://www.youtube.com/watch?v=vYho21M44Lw
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Mapping the set of possible joint velocities, represented as a square in the
0,02 space, through the Jacobian to find the parallelogram of possible end-effector
velocities. The extreme points A, B, C, and D in the joint velocity space map to the
extreme points A, B, C, and D in the end-effector velocity space.
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= in a given configuration, we wish to evaluate how “effective”
Is the mechanical transformation between joint velocities and
end-effector velocities

= how easily” can the end-effector be moved in the various directions
of the task space

= equivalently, "how far” is the robot from a singular condition

s we consider all end-effector velocities that can be obtained
by choosing joint velocity vectors of unit norm

i'¢g=1 mp o1 Py = 1
task velocity

manipulability ellipsoid (JJT)'l if p=m

note: the “core” matrix of the ellipsoid
equation v A1 v=1 is the matrix Al
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An ellipsoid visualization of g' A~'¢ = 1 in the ¢ space R®, where the
principal semi-axis lengths are the square roots of the eigenvalues A; of A and the
directions of the principal semi-axes are the eigenvectors v;.
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in velocity

planar 2R arm with unitary links Iength of principal (semi—)axes:
singular values of J (in its SVD)

o scale of O'?{,]} o— \/Az{.]Jf} 2 O

; ellipsoid

.

1¥F

in a singularity, the ellipsoid
loses a dimension
(for m=2, it becomes a segment)

direction of principal axes:
(orthogonal) eigenvectors
associated to A,

manipulability ellipsoid

m

W = \/detJJT = Hai > ()

=1

manipulability measure

« | proportional to the volume of the
ellipsoid (for m=2, to its area)

0 1 2
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Manipulability measure

planar 2R arm with unitary links: Jacobian J is square = Jdet(ﬂr] - VdetJ- det J* =|de”\=£11“f

manipulability (L, =1L =1)
1

manipulability as a function of radial distance (L, =L,=1)

singular values of J as a function of radial distance (L, =L, = 1)

08}

08
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05}

idet J

04}

ozl max at 8,=x/2

01}
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o
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distanca along ¥—axis [m] distance along x—axis [m)

best posture for manipulation
(similar to a human arm!)

full isotropy is never obtained
in this case, since it always o;,#0,
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Example two link planar arm
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Velocity manipulability ellipsoid

//

o

J(0)

joint velocity circle

Sr————

tip velocity ellipse
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LV Transformation joint torque to EE force

T2 k f2 A D

Mapping joint torque bounds to tip force bounds.



Force manipulability
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= in a given configuration, evaluate how "“effective” is the
transformation between joint torques and end-effector forces

= how easily” can the end-effector apply generalized forces (or balance
applied ones) in the various directions of the task space

= in singular configurations, there are directions in the task space where

external forces/torques are balanced by the robot without the need of
any joint torque

= we consider all end-effector forces that can be applied (or
balanced) by choosing joint torque vectors of unit norm

rfr=1 m FljJ'F=1

same directions of the principal
axes of the velocity ellipsoid, but task force

with semi-axes of inverse lengths manipulability ellipsoid



Velocity and force manipulability

dual comparison of actuation vs. control

Vebdt:o;ﬁé force planar 2R arm with unitary links
ellipsoids have here velocity manipulability eflipsoid force manipulabilty ellipsoid
a different scale T\-1 1 1
for a better view 2 area x q#'d'et(.ff) =g,(J)- o,(J) 2 area x '\/dﬂ(ﬂ ) = % )
1.5 15

E o E o
> >
-0.5 0.5
-1 -1
-1.5 -1.5
-2 =2
-2 =15 -1 -05 0 05 1 1.5 2 -2 =15 -1 05 0 05 1 1.5 2
® [m] ¥ [m]

Cartesian actuation task (high joint-to-task transformation ratio):
preferred velocity (or force) directions are those where the ellipsoid stretches

s

Cartesian control task (low transformation ratio = high resolution):
preferred velocity (or force) directions are those where the ellipsoid shrinks



Velocity Vs Force manipulability ellipsoids

Only small force can
eenid be applied in the
directions where high
velocities can be
o obtained and
viceversa.

cllipsoid
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) e Kineto-static dualism in manipulability

Therefore, according to the concept of force/velocity duality, a direction along which
good velocity manipulability is obtained is a direction along which poor force
manipulability is obtained, and vice versa.

velocity force

A
writing plane ‘ throwing direction

velocity



Kineto-static dualism in manipulability




— Velocity manipulability ellipsoid
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the shape and orientation of the velocity ellipsoid are determined by the core of its quadratic form and
then by the matrix A=J(q)J(g)"which is in general a function of the manipulator configuration.

rTA 1z =1
A € R™*™ (symmetric, positive definite)

e-vals of A = A\

g

(45

ellipsoid in .
T Space tA = JJ

then x = vy

manipulability ellipsoid




— Force manipulability ellipsoid
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the shape and orientation of the force ellipsoid are determined by the core of its quadratic form and then by the matrix
A=(J(g)Jd(g)")* which is in general a function of the manipulator configuration.

vy (J(q) T (q))v. =1

eI A 1y =1

A € R™*™ (symmetric, positive definite)

e-vals of A = ).
e-vecs of A =vy,...,Unm
v: vy
ellipsoid in /
T Space if A= (JJT) !
then z = fi;p

force ellipsoid




The end!
—

Thank you for your Attentionl!l

Any Questions?




