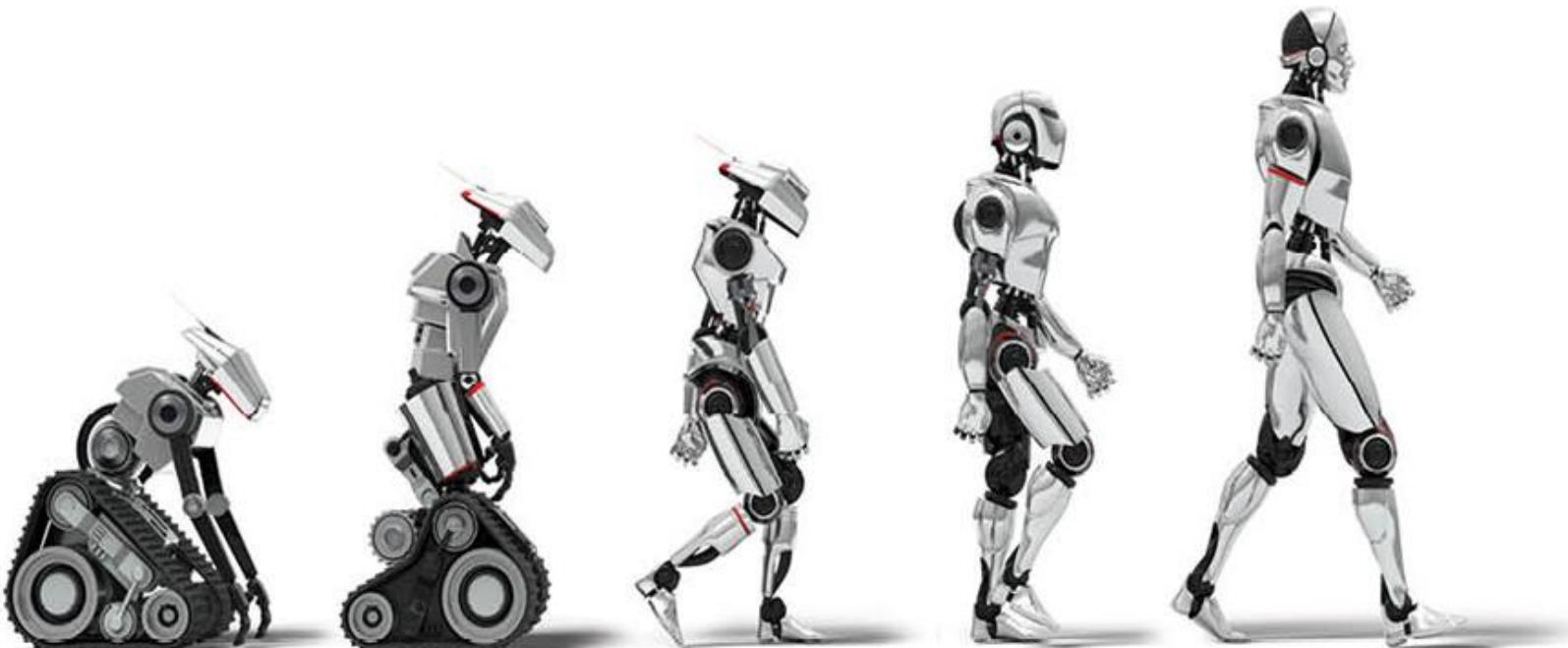


UNIVERSITÄT
HEIDELBERG
ZUKUNFT
SEIT 1386

Universität Heidelberg

Fakultät für Physik und Astronomie

Exercises Robotics 9



Rotation Matrix

We are given an incomplete time-varying rotation matrix from frame 0 to frame 1:

$${}^0\mathbf{R}_1(t) = \begin{pmatrix} \cos t & a(t) & b(t) \\ \sin t & \frac{k(t)}{\sqrt{2}} \cos t & c(t) \\ 0 & -\frac{k(t)}{\sqrt{2}} \sin t & d(t) \end{pmatrix}.$$

Determine the expressions of $a(t)$, $b(t)$, $c(t)$, $d(t)$, and $k(t)$ in a consistent way.

Rotation Matrix

We need to impose orthonormality conditions to the columns of ${}^0\mathbf{R}_1(t)$ and check finally that $\det {}^0\mathbf{R}_1(t) = +1$, for all times t . The first column \mathbf{r}_1 is already of unitary norm. For the second column \mathbf{r}_2 , we need to impose the unit norm condition

$$\|\mathbf{r}_2\|^2 = a^2(t) + \frac{k^2(t) \cos^2 t}{2} + \frac{k^2(t) \sin^2 t}{2} = a^2(t) + \frac{k^2(t)}{2} = 1 \quad (1)$$

and the condition of orthogonality $\mathbf{r}_2 \perp \mathbf{r}_1$

$$a(t) \cos t + \frac{k(t) \cos t}{\sqrt{2}} \sin t = 0.$$

The latter provides $a(t) = -k(t) \sin t / \sqrt{2}$. Substituting in (1) yields

$$\frac{k^2(t) \sin^2 t}{2} + \frac{k^2(t)}{2} = 1 \quad \Rightarrow \quad k(t) = \pm \sqrt{\frac{2}{1 + \sin^2 t}}. \quad (2)$$

Therefore, the second column of ${}^0\mathbf{R}_1(t)$ is

$$\mathbf{r}_2 = \left(\frac{\mp \sin t}{\sqrt{1 + \sin^2 t}} \quad \frac{\pm \cos t}{\sqrt{1 + \sin^2 t}} \quad \frac{\mp \sin t}{\sqrt{1 + \sin^2 t}} \right)^T. \quad (3)$$

Similarly, for the third column \mathbf{r}_3 , we impose first the orthogonality $\mathbf{r}_3 \perp \mathbf{r}_1$

$$b(t) \cos t + c(t) \sin t = 0 \quad \Rightarrow \quad b(t) = \alpha(t) \sin t, \quad c(t) = -\alpha(t) \cos t. \quad (4)$$

Rotation Matrix

Using (3) and (4), we impose next the orthogonality $\mathbf{r}_3 \perp \mathbf{r}_2$ as¹

$$\alpha(t) \frac{\sin^2 t}{\sqrt{1 + \sin^2 t}} + \alpha(t) \frac{\cos^2 t}{\sqrt{1 + \sin^2 t}} + d(t) \frac{\sin t}{\sqrt{1 + \sin^2 t}} = 0 \Rightarrow \alpha(t) = -d(t) \sin t.$$

Finally, the unit norm condition provides

$$\|\mathbf{r}_3\|^2 = 1 \Rightarrow d^2(t) (\sin^4 t + \sin^2 t \cos^2 t + 1) = 1 \Rightarrow d(t) = \frac{\pm 1}{\sqrt{1 + \sin^2 t}}. \quad (5)$$

The uncertainty left in the signs of $k(t)$ and $d(t)$, respectively in eq. (2) and eq. (5), is eliminated by imposing the determinant of ${}^0\mathbf{R}_1(t)$ to be equal to $+1$. This holds true when choosing either both positive signs for $k(t)$ and $d(t)$, or both negative. The first solution is

$${}^0\mathbf{R}_1(t) = \begin{pmatrix} \cos t & -\frac{\sin t}{\sqrt{1 + \sin^2 t}} & -\frac{\sin^2 t}{\sqrt{1 + \sin^2 t}} \\ \sin t & \frac{\cos t}{\sqrt{1 + \sin^2 t}} & \frac{\sin t \cos t}{\sqrt{1 + \sin^2 t}} \\ 0 & -\frac{\sin t}{\sqrt{1 + \sin^2 t}} & \frac{1}{\sqrt{1 + \sin^2 t}} \end{pmatrix}, \quad (6)$$

and corresponds to the case when ${}^0\mathbf{R}_1(0) = \mathbf{I}$. The second solution is as in (6), but with each element of the second and third column having the opposite sign.

Inverse Kinematics

The table of Denavit-Hartenberg parameters of a 2-dof robot is:

i	α_i	a_i	d_i	θ_i
1	$\pi/2$	0	0	q_1
2	0	0	q_2	0

The two joints have a range limitation: $|q_1| \leq 120^\circ$ and $|q_2| \leq 2$ [m]. Determine all feasible inverse kinematics solutions, if any, when the origin of frame 2 needs to be placed at ${}^0p = (-1, 1)$ [m].

Inverse Kinematics

The given table of parameters refers to the planar RP robot in Fig. 3, where the associated Denavit-Hartenberg frames are also shown. Please note the definition of the first joint angle q_1 , which differs from what one may expect (there is an additional $\pi/2$ with respect to the second link orientation).

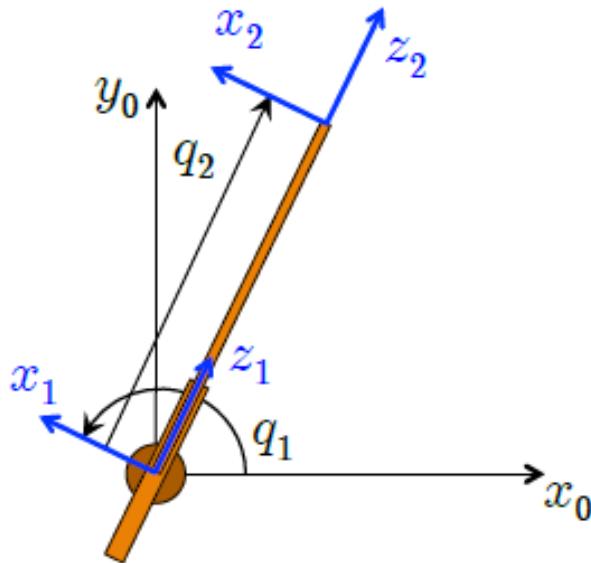


Figure 3: The RP robot, with its Denavit-Hartenberg frames and joint coordinates

The direct kinematics for the position p of the origin of frame 2 is then

$$p = \begin{pmatrix} p_x \\ p_y \end{pmatrix} = \begin{pmatrix} q_2 \sin q_1 \\ -q_2 \cos q_1 \end{pmatrix}.$$

Inverse Kinematics

Out of the singularity ($q_2 \neq 0 \Leftrightarrow p \neq 0$), the two solutions of the inverse kinematics are analytically found as

$$q_2 = \pm \|p\| = \pm \sqrt{p_x^2 + p_y^2}, \quad q_1 = \text{ATAN2} \left\{ \frac{p_x}{q_2}, -\frac{p_y}{q_2} \right\}. \quad (7)$$

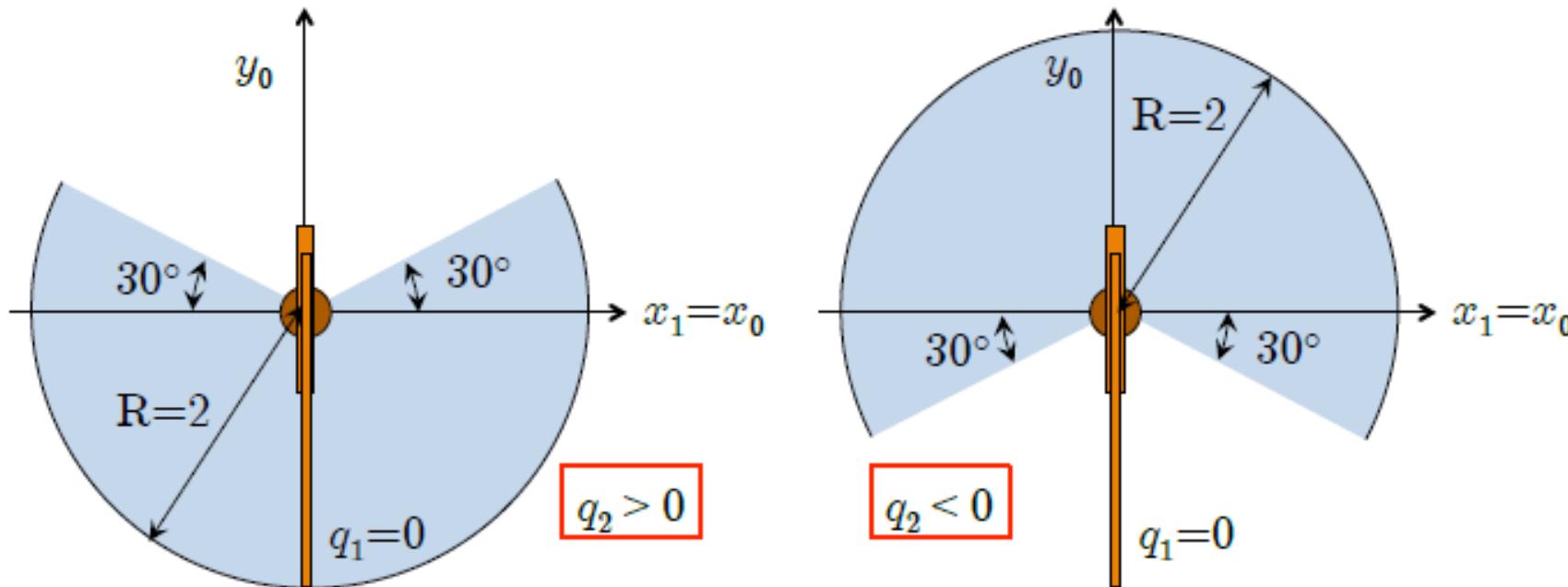


Figure 4: Robot workspace for $|q_1| \leq 120^\circ$, $|q_2| \leq 2$, shown when $q_2 > 0$ (left) and $q_2 < 0$ (right)

Inverse Kinematics

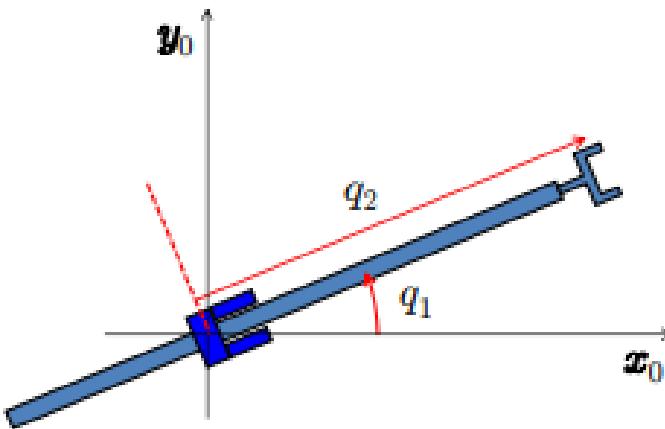


Figure 1: A RP planar robot, with the definition of the joint variables.

The RP robot shown in Fig. 1 starts from rest at time $t = 0$ in the configuration $q(0) = (0, 1)$ [rad; m] and moves under the action of the following discontinuous joint acceleration commands for a time $T = 2$ [s]:

$$\ddot{q}_1(t) = \begin{cases} A_1 = 2 \text{ [rad/s}^2], & t \in [0, T/4], \\ 0, & t \in [T/4, 3T/4], \\ -A_1 = -2 \text{ [rad/s}^2], & t \in [3T/4, T]; \end{cases} \quad \ddot{q}_2(t) = \begin{cases} -A_2 = -0.5 \text{ [m/s}^2], & t \in [0, T/2], \\ A_2 = 0.5 \text{ [m/s}^2], & t \in [T/2, T]. \end{cases}$$

- Plot the time profiles of $q_i(t)$, $\dot{q}_i(t)$ and $\ddot{q}_i(t)$, for $i = 1, 2$.
- Does the robot cross a singularity during this motion?
- Compute the mid time configuration $q(T/2)$ and the final configuration $q(T)$ reached in this motion. Sketch the robot in these two configurations, as well as in the initial one.

Thank you for your Attention!!!

