Best-SAT

YouTube

This post is an expanded translation of my lecture notes from a Randomized and Approximation Algorithms course that I took, and a more detailed explanation of the topics covered in my video about BEST-SAT.

Basic definitions

Definice (Optimalization problem) is a tuple $\mathcal{I}, \mathcal{F}, f, g$

• set of all input instances ${\mathcal I}$

[1]

[2]

- sets of **permissible inputs** $\forall I \in \mathcal{I} : \mathcal{F}(I)$
- utility function $\forall I \in \mathcal{I}, A \in \mathcal{F}(I) : f(I, A)$
- whether we're **maximizing** or **minimizing** (a single bit g)

Definice (NP-Optimalization problem) is an optimalization problem $\mathcal{I}, \mathcal{F}, f, g$, for which we additionally require that:

- the length of all permissible solutions is polynomial
- the language of $(I, A), I \in \mathcal{I}, A \in \mathcal{F}(I)$ is polynomial
 - we can check the correctness of a solution in polynomial time
- f is computable in polynomial time

Definice: algorithm A is R-approximation, if:

- it computes the solution in polynomial time (in terms of |I|)
- for minimalization problem: $\forall I : f(A) \leq R \cdot \text{OPT}(I)$
- for maximalization problem: $\forall I: f(A) \geq \text{OPT}(I)/R$

MAX-SAT

- Input: $C_1 \wedge \ldots \wedge C_n$, each clause is a disjunction of $k_j \geq 1$ literals
- Output: evaluation $a \in \{0,1\}^n$ of the variables (sometimes called literals)
- Goal: maximize the number of satisfied clauses $\sum w_j$

We also assume that:

- no literal repeats in a clause
- at most one of x_i, \overline{x}_i appears in a clause

RAND-SAT

Algoritmus (RAND-SAT)

- 1. choose all literals randomly (independently, for p = 1/2)
- 2. profit?

Věta: RAND-SAT is a 2-approximation algorithm.

Důkaz: we'll create an indicator variable Y_j for each clause

• the chance that C_j is not satisfied is $\frac{1}{2^k}$

Since the size of the clause $k \ge 1$, we get $\mathbb{E}[Y_j] = \Pr[C_j \text{ is satistied}] = 1 - \frac{1}{2^k} \ge \frac{1}{2}$, thus

$$\mathbb{E}\left[\sum_{j=1}^{n} Y_{j}\right] \stackrel{\text{dinearity}}{=} \sum_{j=1}^{n} \mathbb{E}\left[Y_{j}\right] \geq \sum_{j=1}^{n} \frac{1}{2} \geq \frac{1}{2} \text{OPT}$$

^[1] An example problem could be minimum spanning trees:

[•] input instances: set of all weighted graphs

[•] permissible inputs: spanning trees for the given weighted graph

[•] utility function: the spanning tree weight (sum of its edges)

[•] we're minimizing

^[2] For minimalization problem, we ensure that the solution is always small enough. For maximalization problem, we ensure that the solution is always large enough.

LP-SAT

Algoritmus (LP-SAT)

1. build an integer linear program:

- variables will be:
 - $-y_i$ for each literal
 - $-z_j$ for each clause
- inequalitites will be one for each clause, in the form

$$z_j \le \sum_{\text{positive}} y_i + \sum_{\text{negative}} (1 - y_i)$$

[3]

- we'll maximize the number of satisfied clauses $\sum z_i$
- 2. relax the program (allow real variables instead of integers) and calculate the optimum y^*, z^*
- 3. set literals x_i to 1 with probability y_i^*

Věta: LP-SAT is a $\left(1 - \frac{1}{e}\right)$ -approximation algorithm.

To prove this, we'll use a few lemmas/theorems that aren't difficult to prove, but aren't really interesting. I left links to (Wikipedia and I don't feel bad about it) articles with proofs for each, if you're interested.

Fakt (A - A/G mean inequality)

$$\prod_{i=1}^{n} a_i^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^{n} a_i$$

Důkaz: https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means

Fakt (B - Jensen's inequality) if a function is concave on the interval [0,1] and f(0)=a, f(1)=a+b, then

$$\forall x \in [0,1] : f(x) \ge a + bx$$

Důkaz: https://en.wikipedia.org/wiki/Jensen%27s inequality

Fakt (C - 1/e inequality)

$$\left(1-\frac{1}{n}\right)^n \leq \frac{1}{e}$$

Důkaz: https://en.wikipedia.org/wiki/E_(mathematical_constant)#Inequalities

Důkaz (of the main theorem) consider y^*, z^* and C_j with k_j literals; then

$$\begin{split} \Pr\left[C_j \text{ is not satisfied}\right] &= \overbrace{\prod_{i: \ x_i \in C_j} \left(1 - y_i^*\right) \prod_{i: \ \overline{x}_i \in C_j} y_i^*}^{\text{positive}} \\ &\overset{\text{A}}{\leq} \left[\frac{1}{k_j} \left(\sum_{i: \ x_i \in C_j} \left(1 - y_i^*\right) + \sum_{i: \ \overline{x}_i \in C_j} y_i^*\right)\right]^{k_j} \\ &= \left[1 - \frac{1}{k_j} \left(\sum_{i: \ x_i \in C_j} y_i^* + \sum_{i: \ \overline{x}_i \in C_j} \left(1 - y_i^*\right)\right)\right]^{k_j} \\ &\leq \left(1 - \frac{z_j^*}{k_j}\right)^{k_j} \end{split}$$

^[3] We're using the optimal solution to the linear program (and generally the formula, if we allow real values for literals) as a guide for our randomized algorithm.

We're interested in the satisfied ones, so

$$\Pr\left[C_{j} \text{ is satisfied}\right] \geq 1 - \left(1 - \frac{z_{j}^{*}}{k_{j}}\right)^{k_{j}}$$

$$\stackrel{B}{\geq} \left[1 - \left(1 - \frac{1}{k_{j}}\right)^{k_{j}}\right] z_{j}^{*} \stackrel{C}{\geq} \left(1 - \frac{1}{e}\right) z_{j}^{*}$$

To use fact B, we observed that a = f(0) = 0 and that the second derivation is non-positive (so the function is concave). Now to formally count how many our program satisfies:

$$\mathbb{E}\left[\sum_{j=1}^{m} Y_{j}\right] = \sum_{j=1}^{m} \mathbb{E}\left[Y_{j}\right]$$

$$\geq \sum_{j \in U} \Pr\left[C_{j} \text{ is satisfied}\right]$$

$$\geq \sum_{j \in U} \left(1 - \frac{1}{e}\right) z_{j}^{*}$$

$$= \left(1 - \frac{1}{e}\right) \text{OPT}$$

BEST-SAT

Algoritmus (BEST-SAT)

- 1. assign a value of a literal using RAND-SAT with probability 1/2, else use BEST-SAT
- 2. have an existential crisis about the fact that this works and is asymptotically optimal

Věta: BEST-SAT is $\frac{3}{4}$ -approximation.

Důkaz: we want to prove that $\Pr[C_j \text{ is satisfied}] \geq \frac{3}{4}z_j^*$.

Let's look at the probability that each algorithm satisfies a clause of k variables:

- RAND-SAT: $1 \frac{1}{2^k}$ (at least one literal must be satisfied)
- LP-SAT: $\left[1-\left(1-\frac{1}{k}\right)^k\right]z_j^*$ (the formula right before using fact C)

Now the proof boils down to the following table:

$\overline{k_j}$	RAND-SAT	LP-SAT	BEST-SAT
1 2	$ \frac{\frac{1}{2} \ge \frac{1}{2} z_j^*}{\ge \frac{3}{4} z_i^*} $	$\frac{1 \cdot z_j^*}{\frac{3}{4} \cdot z_i^*}$	$\frac{\frac{1}{2}\frac{1}{2} + \frac{1}{2}z_j^* \ge \frac{3}{4}z_j^*}{\ge \frac{3}{4}z_i^*}$
≥ 3	$\geq \frac{7}{8}z_j^*$	$\stackrel{ extstyle 4}{\geq} \left(1 - rac{1}{e} ight) \cdot z_j^*$	$> \frac{3}{4}z_j^*$