1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
| from pulp import *
from itertools import *
# graphs as an adjacency list - how far is it from vertex i to vertex j
# taken from https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html
graphs = [
[
"FIVE",
[[0], [3, 0], [4, 4, 0], [2, 6, 5, 0], [7, 3, 8, 6, 0]],
],
[
"P01",
[
[0],
[29, 0],
[82, 55, 0],
[46, 46, 68, 0],
[68, 42, 46, 82, 0],
[52, 43, 55, 15, 74, 0],
[72, 43, 23, 72, 23, 61, 0],
[42, 23, 43, 31, 52, 23, 42, 0],
[51, 23, 41, 62, 21, 55, 23, 33, 0],
[55, 31, 29, 42, 46, 31, 31, 15, 29, 0],
[29, 41, 79, 21, 82, 33, 77, 37, 62, 51, 0],
[74, 51, 21, 51, 58, 37, 37, 33, 46, 21, 65, 0],
[23, 11, 64, 51, 46, 51, 51, 33, 29, 41, 42, 61, 0],
[72, 52, 31, 43, 65, 29, 46, 31, 51, 23, 59, 11, 62, 0],
[46, 21, 51, 64, 23, 59, 33, 37, 11, 37, 61, 55, 23, 59, 0],
],
],
[
"GR17",
[
[0],
[633, 0],
[257, 390, 0],
[91, 661, 228, 0],
[412, 227, 169, 383, 0],
[150, 488, 112, 120, 267, 0],
[80, 572, 196, 77, 351, 63, 0],
[134, 530, 154, 105, 309, 34, 29, 0],
[259, 555, 372, 175, 338, 264, 232, 249, 0],
[505, 289, 262, 476, 196, 360, 444, 402, 495, 0],
[353, 282, 110, 324, 61, 208, 292, 250, 352, 154, 0],
[324, 638, 437, 240, 421, 329, 297, 314, 95, 578, 435, 0],
[70, 567, 191, 27, 346, 83, 47, 68, 189, 439, 287, 254, 0],
[211, 466, 74, 182, 243, 105, 150, 108, 326, 336, 184, 391, 145, 0],
[268, 420, 53, 239, 199, 123, 207, 165, 383, 240, 140, 448, 202, 57, 0],
[
246,
745,
472,
237,
528,
364,
332,
349,
202,
685,
542,
157,
289,
426,
483,
0,
],
[
121,
518,
142,
84,
297,
35,
29,
36,
236,
390,
238,
301,
55,
96,
153,
336,
0,
],
],
],
]
for name, distances in graphs:
n = len(distances)
model = LpProblem(sense=LpMinimize)
# variables - binary x_{i, j} based on if the edge (i, j) is on the cycle
# they're symmetric so we only care about i > j
# variables x_{i, i} will always be zero, they're there for nicer code
variables = [
[LpVariable(name=f"x_{i}_{j}", cat=LpBinary) for j in range(i + 1)]
for i in range(n)
]
# inequalities
## each edge has one incoming and one outgoing vertex
for i in range(n):
model += lpSum([variables[max(i, j)][min(i, j)] for j in range(n)]) == 2
model += variables[i][i] == 0
## each subset of vertices has an outgoing edge (no smaller loops!)
for size in range(1, n - 1):
for subset in combinations(range(n), r=size):
model += (
lpSum(
[
variables[max(i, j)][min(i, j)]
for i in subset
for j in range(n)
if j not in subset
]
)
>= 1
)
# objective function - minimize the length of the cycle
model += lpSum(
[
variables[i][j] * distances[i][j]
for i, j in product(range(n), repeat=2)
if i > j
]
)
status = model.solve(PULP_CBC_CMD(msg=False))
print(name + "\n" + "-" * len(name))
print("minimal tour: ", int(model.objective.value()))
for i in range(n):
for j in range(n):
print(int(variables[max(i, j)][min(i, j)].value()), " ", end="")
print()
print()
|